Life cycle assessment of Brazilian civil housing construction

Authors

DOI:

https://doi.org/10.33448/rsd-v11i1.25360

Keywords:

Sustainability; Environmental impacts; Residential civil construction.

Abstract

Housing construction requires a large amount of natural resources, causing significant damage to the environment. This work aims to quantify the potential negative environmental impacts of the most relevant inputs used in the construction of residential buildings per m² of built area. To represent the most common constructions in Brazil, three popular standard residential projects, employed in government housing programs, with different floors and construction methods, were used as a reference for input calculations. Potential negative environmental impacts were estimated using the Life Cycle Assessment methodology. The results show that the greatest negative environmental impacts are related to buildings with more than one floor, mainly due to the use of cement and ceramic coating. Finally, this study provides information that helps decision-making, the elaboration of architectural projects, construction processes and the acquisition of construction materials, aiming to minimize potential negative environmental impacts.

Author Biographies

Emmanuel Eduardo Vitorino de Farias, Universidade Estadual da Paraíba

Engenheiro Civil na Prefeitura Minucipal de Boa Vista-PB;

Engenheiro na Empresa Techne Engenheiros Consultores - Atuando na ára de orçamento, projetos de esgotamento sanitário, tratamento de esgoto a nível terceário, abastecimento de água, barragens de terra e concreto compactado a rolo.

Engenheiro civil na Agencia Pernambucana de Águas e Clima (APAC) - Trabalhando na Secretaria de Recursos Hídricos e Energeticos de Pernambuco (SRHE), atuando na analise de projetos de esgotamento sanitário, tratamento de esgoto, absatecimento de água e orçamentos. 

Engenheiro Civil concursado na Universidade Federal Rural de Pernambuco (UFRPE) atuando na elaboração de orçamentos, projetos de edificações (estrutural, hidraulico, sanitário) e fiscalização de obras.

Engenheiro Civil concursado na Universidade Federal de Campina Grande (UFCG) atuando na elaboração de orçamentos, projetos de edificações (estrutural, hidraulico, sanitário).

Rui de Oliveira, Universidade Estadual da Paraíba

Professor Associado do Departamento de Engenharia Sanitária e Ambiental do Centro de Ciências e Tecnologia da Universidade Estadual da Paraíba.

Tem experiência em pesquisa na área de Engenharia Sanitária, com ênfase em técnicas convencionais de tratamento de águas.

Atualmente, desenvolve pesquisa na área de Gestão da Qualidade da Água.

Mônica Maria Pereira da Silva, Universidade Estadual da Paraíba

Universidade Estadual da Paraíba / Professor a Associada A-RE (Biologia)

Thiago Aguiar de Melo, Universidade Federal de Campina Grande

Engenheiro eletricista na Universidade Federal de Campina Grande

References

Aktas, Can B., Bilec, & Melissa M. (2011). Impact of lifetime on US residential building LCA results. The International Journal Of Life Cycle Assessment, 17(3), 337-349. http://dx.doi.org/10.1007/s11367-011-0363-x.

Asadollahfardi, G., Asadi, M., & Karimi, S. (2015). Life-Cycle Assessment of Construction in a Developing Country. Environmental Quality Management, 24(4), 11-21. Wiley. http://dx.doi.org/10.1002/tqem.21398.

ABNT. (2014). NBR ISO 14040: Gestão ambiental - Avaliação do ciclo de vida - Princípios e estrutura.

ABNT. (2013). NBR 15575-1: Edificações Habitacionais: Desempenho: Parte 1: Requisitos gerais.

Azevedo, L. D. de, Geraldi, M. S., & Ghisi, E. (2020). Avaliação do Ciclo de Vida de diferentes envoltórias para habitações de interesse social em Florianópolis. Ambiente Construído, 20(4), 123-141. http://dx.doi.org/10.1590/s1678-86212020000400463.

Beck, H. L. (1989). Radiation exposures due to fossil fuel combustion. International Journal Of Radiation Applications And Instrumentation. Part C. Radiation Physics And Chemistry, 34(2), 285-293. http://dx.doi.org/10.1016/1359-0197(89)90236-1.

Lei nº 11.514, de 13 de agosto de 2007 (2007). Dispõe sobre as diretrizes para a elaboração e execução da Lei Orçamentária de 2008 e dá outras providências. Brasília, DF: Diário Oficial da União.

Brasil. Ministério da Economia. (2020) Relatório de Avaliação: programa minha casa minha vida. Programa Minha Casa Minha Vida. https://www.gov.br/cgu/pt-br/assuntos/noticias/2021/04/cgu-divulga-prestacao-de-contas-do-presidente-da-republica-de-2020/relatorio-de-avaliacao-pmcmv.pdf/view.

Caixa Econômica Federal (2017). SINAPI - Sistema Nacional de Pesquisa de Custos e Índices da Construção Civil. Demonstrações de Uso: Fichas técnicas. https://www.caixa.gov.br/site/paginas/downloads.aspx.

Caixa Econômica Federal (2021). SINAPI - Sistema Nacional de Pesquisa de Custos e Índices da Construção Civil. https://www.caixa.gov.br/poder-publico/modernizacao-gestao/sinapi/Paginas/default.aspx.

Caixa Econômica Federal (2020). SINAPI - Sistema Nacional de Pesquisa de Custos e Índices da Construção Civil. Metodologias e Conceitos. https://www.caixa.gov.br/Downloads/sinapi-manual-de-metodologias-e-conceitos/Livro1_SINAPI_Metodologias_e_Conceitos_8_Edicao.pdf.

Chipperfield, Martyn P. (2015). Global Atmosphere – The Antarctic Ozone Hole. Issues In Environmental Science And Technology, 1-33. Royal Society of Chemistry. http://dx.doi.org/10.1039/9781782622178-00001

Ciroth, A., Noi, C. Di, Lohse, T., Srocka, M. OpenLCA 1.9: Comprehensive user manual. Berlin: Greendelta, 2019. 116 p. http://www.openlca.org/learning/.

Devi, K. S., Lakshmi, V. V., Alakanandana, A. (2017). Impacts of cement industry on environment: an overview. Asia Pacific Journal Of Research. 1, 156-161. https://www.researchgate.net/publication/323029097_Impacts_of_Cement_Industry_on_Environment_-_An_Overview.

Fazio, S., Castellani, V., Sala, S., Schau, E., Secchi, M., Zampori, L., Diaconu, E. (2018). Supporting information to the characterisation factors of recommended EF Life Cycle Impact Assessment method: new models and differences with ilcd. Jrc Technical Reports. Inspra, 1-42. https://publications.jrc.ec.europa.eu/repository/handle/JRC109369.

Fundação Getúlio Vargas (2018). Análise das Necessidades habitacionais e suas tendências para os próximos dez anos. https://www.abrainc.org.br/estudos/2018/10/17/abrainc-e-fgv-apresentam-estudo-da-analise-das-necessidades-habitacionais-e-suas-tendencias-para-os-proximos-dez-anos/. Acesso em: 26 dez. 2021.

Gerbens-Leenes, P. W., Hoekstra, A. Y., & Bosman, R. (2018). The blue and grey water footprint of construction materials: steel, cement and glass. Water Resources And Industry, 19, 1-12. http://dx.doi.org/10.1016/j.wri.2017.11.002.

GREENDELTA. OpenLCA. 2020. http://www.openlca.org/.

Guggemos, A. A., & Horvath, A. (2005). Comparison of Environmental Effects of Steel- and Concrete-Framed Buildings. Journal of Infrastructure Systems, 11(2), 93-101. http://dx.doi.org/10.1061/(asce)1076-0342(2005)11:2(93).

Heede, P. Van D., Belie, N. De. (2012). Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: literature review and theoretical calculations. Cement And Concrete Composites, 34(4), 431-442. http://dx.doi.org/10.1016/j.cemconcomp.2012.01.004.

Ibáñez-Forés, V., Bovea, M.-D., & Simó, A. (2011). Life cycle assessment of ceramic tiles. Environmental and statistical analysis. The International Journal Of Life Cycle Assessment, 16(9), 916-928. http://dx.doi.org/10.1007/s11367-011-0322-6.

Instituto Brasileiro de Geografia e Estatística (2015). Pesquisa Nacional por Amostra de Domicílios – Acesso à internet e à televisão e posse de telefone móvel celular para uso pessoal. p. 25. https://biblioteca.ibge.gov.br/visualizacao/livros/liv99054.pdf.

Ingrao, C., Messineo, A., Beltramo, R., Yigitcanlar, T., & Ioppolo, G. (2018). How can life cycle thinking support sustainability of buildings? Investigating life cycle assessment applications for energy efficiency and environmental performance. Journal Of Cleaner Production, 201, 556-569. http://dx.doi.org/10.1016/j.jclepro.2018.08.080.

Kamali, M., Hewage, K., & Sadiq, R. (2019). Conventional versus modular construction methods: a comparative cradle-to-gate lca for residential buildings. Energy and Buildings, 204, 109479. http://dx.doi.org/10.1016/j.enbuild.2019.109479.

Madlool, N. A., Saidur, R., Hossain, M. S., & Rahim, N. A. (2011). A critical review on energy use and savings in the cement industries. Renewable And Sustainable Energy Reviews, 15(4), 2042-2060. http://dx.doi.org/10.1016/j.rser.2011.01.005.

Mattos, A. D. (2006). Como preparar orçamentos de obras: dicas para orçamentistas, estudos de caso, exemplos. (4a ed.), Pini. 281 p.

Medeiros, L. M., Durante, L. C., Callejas, I. J. A. (2018). Contribuição para a avaliação de ciclo de vida na quantificação de impactos ambientais de sistemas construtivos. Ambiente Construído, 18(2), 365-385. http://dx.doi.org/10.1590/s1678-86212018000200259.

Minguillón, M. C., Monfort, E., Querol, X., Alastuey, A., Celades, I., & Miró, J. V. (2009). Effect of ceramic industrial particulate emission control on key components of ambient PM10. Journal Of Environmental Management, 90(8), 2558-2567. http://dx.doi.org/10.1016/j.jenvman.2009.01.016.

Montes, M. A. T. (2016). Abordagem Integrada no Ciclo de Vida de Habitações de Interesse Social considerando mudanças climáticas. 573 f. Tese (Doutorado em Engenharia Civil) - Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Santa Catarina, Florianópolis, 2016.

Moretti, L., Caro, S. (2017). Critical analysis of the Life Cycle Assessment of the Italian cement industry. Journal Of Cleaner Production, 152, 198-210. http://dx.doi.org/10.1016/j.jclepro.2017.03.136.

Nematchoua, M. K., Teller, J., & Reiter, S. (2019). Statistical life cycle assessment of residential buildings in a temperate climate of northern part of Europe. Journal of Cleaner Production. 229, 621-631. http://dx.doi.org/10.1016/j.jclepro.2019.04.370.

Ortiz, Oscar, Castells, Francesc, Sonnemann, Guido. (2009). Sustainability in the construction industry: a review of recent developments based on lca. Construction And Building Materials, 23(1), 28-39. http://dx.doi.org/10.1016/j.conbuildmat.2007.11.012.

Oyarzo, J., & Peuportier, B. (2014). Life cycle assessment model applied to housing in Chile. Journal Of Cleaner Production, 69, 109-116. http://dx.doi.org/10.1016/j.jclepro.2014.01.090.

Stafford, F. N., Raupp-Pereira, F., Labrincha, J. A., & Hotza, D. (2016). Life cycle assessment of the production of cement: a brazilian case study. Journal Of Cleaner Production, 137, 1293-1299. http://dx.doi.org/10.1016/j.jclepro.2016.07.050.

Suárez, Sindy, Roca, Xavier, Gasso, Santiago. (2016). Product-specific life cycle assessment of recycled gypsum as a replacement for natural gypsum in ordinary Portland cement: application to the spanish context. Journal Of Cleaner Production, 117, 150-159. http://dx.doi.org/10.1016/j.jclepro.2016.01.044.

Tae, S., Baek, C., & Shin, S. (2011). Life cycle CO2 evaluation on reinforced concrete structures with high-strength concrete. Environmental Impact Assessment Review, 31(3), 253-260. http://dx.doi.org/10.1016/j.eiar.2010.07.002.

Published

15/01/2022

How to Cite

FARIAS, E. E. V. de .; OLIVEIRA, R. de; SILVA, M. M. P. da .; MELO, T. A. de. Life cycle assessment of Brazilian civil housing construction. Research, Society and Development, [S. l.], v. 11, n. 1, p. e58011125360, 2022. DOI: 10.33448/rsd-v11i1.25360. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/25360. Acesso em: 26 apr. 2024.

Issue

Section

Engineerings