Soil-cement brick: incorporation of waste and feasibility in civil construction in Brazil

Authors

DOI:

https://doi.org/10.33448/rsd-v11i2.25605

Keywords:

Soil-cement brick; Civil construction; Civil construction waste.

Abstract

The search for materials with lower environmental impact is a fundamental agenda for a constant evolution of civil construction and society, becoming increasingly recurrent. These materials have to present a reduction in the atmosphere pollutants emission, fulfill the technical requirements established by the standards according to the purpose of each composition, enable to reduce or reuse of waste, and a good cost-benefit ratio. Thus, this article aims to analyze the economic and environmental viability of the soil-cement brick in civil construction in Brazil, as well as to identify the main results of the incorporation of waste in its manufacture. This is an integrative bibliographic review of the literature, which was carried out between August 2021 and January 2022. The soil-cement brick has an economy of 41% when compared to ceramic brick, and can be articulated with the social interest housing; in addition, it generates less environmental impact, either by reducing polluting gases - a 29.5% reduction in CO2, or by reusing waste. It is possible to find in the literature the incorporation of several residues with different results. Therefore, the potential of the soil-cement brick is evident by the reuse of waste, helping in the disposal and reuse; for having a lower financial cost in the construction and lower CO2 emission; in addition to having the potential to be used in housing programs in order to reduce the housing deficit in Brazil. However, more research is needed with this constructive method, in order to acquire greater reliability of this material.

References

ABRELPE. (2020). Panorama dos resíduos sólidos no Brasil. Associação Brasileira de Limpeza Pública e Resíduos Especiais.

Associação Brasileira de Normas Técnicas. NBR 8491 (2012). Tijolo de solo-cimento – Requisitos. Rio de Janeiro.

Associação Brasileira de Normas Técnicas. NBR 8492 (2012). Tijolo de solo-cimento – Análise dimensional, determinação da resistência à compressão e da absorção de água – Método de ensaio. Rio de Janeiro.

Associação Brasileira de Normas Técnicas. NBR 10833 (2013). Fabricação de tijolo e bloco de solo-cimento com utilização de prensa manual ou hidráulica - Procedimento. Rio de Janeiro.

Azevedo, A. R. G., Marvila, T. M., Fernandes, W. J., Alexandre, J., Xavier, G. C., Zanelato, E. B., ... & Mendes, B. C. (2019). Assessing the potential of sludge generated by the pulp and paper industry in assembling locking blocks. Journal of Building Engineering, 23, 334-340.

Brasil. Conselho Nacional do Meio Ambiente (CONAMA). Resolução no 307. Diário Oficial da União. Brasília, DF: Imprensa Oficial, 5 jul. 2002.

Brasil. (2020). Produto Interno Bruto - PIB. IBGE. https://www.ibge.gov.br/explica/pib.php.

Castro, E., Villella, L., Mendes, L., Mendes, R., Ribeiro, A., Júnior, J. & Rabelo, G. (2019). Analysis of the coffee peel application over the soil-cement bricks properties. Coffee Science, 14(1), 12.

Castro, M., Costa, F., Borba, S., Fagury Neto, E., & Rabelo, A. (2016). Avaliação das propriedades físicas e mecânicas de blocos de solo-cimento formulados com coprodutos siderúrgicos. Matéria (Rio de Janeiro), 21(3), 666-676.

CBIC. (2020). PIB Brasil e Construção Civil. http://www.cbicdados.com.br/menu/pib-e-investimento/pib-brasil-e-construcao-civil.

International Energy Agency. (2009). Cement Technology Roadmap: carbon emissions reductions up to 2050. Organisation for Economic and Co-operation and Development.

Cristina, P., Salomão, P., Cangussú, L., & Carvalho, P. (2018). Tijolo solo cimento com adição de fibra vegetal: Uma alternativa na construção civil. Research, Society and Development, 7(9), 779439.

Damineli, B. L., & John, V. M. (2012). Developing low CO2 concretes: is clinker replacement sufficient? The need of cement use efficiency improvement. In Key Engineering Materials (Vol. 517, pp. 342-351). Trans Tech Publications Ltd.

Felix, E., & Possan, E. (2018). Balance emissions and CO2 uptake in concrete structures: Simulation based on the cement content and type. Revista ibracon de estruturas e materiais, 11(1), 135-162.

Ferreira, R., & Cunha, A. (2017). Quality evaluation of soil-cement-plant residue bricks by the combination of destructive and non-destructive tests. Revista Brasileira De Engenharia Agrícola e Ambiental, 21(8), 543-549.

FJP. (2021). Déficit Habitacional no Brasil - 2016-2019, Belo Horizonte.

Kozloski, C., Vaghetti, M., & da Silva, B. (2019). Emissões de co2 na casa popular eficiente e o emprego de materiais alternativos. Euro elecs: III encuentro latinoamericano y europeo de Edificaciones y comunidades sostenibles.

Leonel, R., Folgueras, M., Dalla Valentina, L., Prim, S., Prates, G., & Caraschi, J. (2017). Characterization of soil-cement bricks with incorporation of used foundry sand. Cerâmica (São Paulo), 63(367), 329-335.

Lima, F., & Lima, P. (2020). Resumo de tese: blocos de terra compactada de solo-cimento com resíduo de argamassa de assentamento e revestimento: caracterização para uso em edificações. MIX Sustentável, 6(3), 183-184.

Mehta, P., monteiro, P., & Concreto Microestrutura, P. (2014). Materiais. 2ª Edição. IBRACON, 751.

Müller, N., & Harnisch, J. (2008). How to Turn Around the Trend of Cement Related Emissions in the Developing World. WWF—Lafarge Conservation Partnership: Gland, Switzerland.

Negreiros, R. L., Nunes, K. G., Bispo, C., & de Morais, A. (2018). Comparativo sustentável e econômico entre a utilização do tijolo solo-cimento e o tijolo cerâmico de vedação em habitação de interesse social na cidade de teófilo otoni-mg. Revista Multidisciplinar do Nordeste Mineiro–Unipac ISSN, 2178, 6925.

Pisani, M. A. J. (2005). Um material de construção de baixo impacto ambiental: O tijolo de solo-cimento. Sinergia, São Paulo, 6(1), 53-59.

Ribeiro, V., Werdine, D., Barbosa, L., Pinheiro, M., Oliveira, A., Alves, A., & Silva, L. (2021). Tijolo solo cimento com acréscimo de resíduos de borracha de pneu. Research, Society and Development, 10(12), E253101220504.

Silva, D., & Aguiar, M. B. (2017). A utilização da casca da banana como substituição de parte do cimento na produção de tijolos ecológicos: a busca por alternativas sustentáveis. Percurso acadêmico, 7(13), 19-32.

Silva, P. F., Sousa, R. M. L., das Chagas Oliveira, F., Melo, S. T., Sousa, H. F., Lopes, P. D., ... & Soares, R. A. L. (2021). Estudo da viabilidade de utilização de garrafa PET triturada na produção de tijolos ecológicos. Research, Society and Development, 10(14), e455101422273.

Siqueira, F., Amaral, M., Bou-Issa, R., & Holanda, J. (2016). Influence of industrial solid waste addition on properties of soil-cement bricks. Cerâmica (São Paulo), 62(363), 237-241.

Tosello, M. E. C., Tamashiro, J. R., Silva, L. H. P., Antunes, P. A., & Simões, R. D. (2021). Influência de materiais recicláveis e vinhaça da cana de açúcar na resistência mecânica de tijolos ecológicos. Research, Society and Development, 10(2), e56910212911.

Vilela, A. P., Eugênio, T. M. C., de Oliveira, F. F., Mendes, J. F., Ribeiro, A. G. C., Brandão, L. E. V. D. S., & Mendes, R. F. (2020). Technological properties of soil-cement bricks produced with iron ore mining waste. Construction and Building Materials, 262, 120883.

Whittemore, R., & Knafl, K. (2005). The integrative review: updated methodology. Journal of advanced nursing, 52(5), 546-553.

Published

22/01/2022

How to Cite

SILVA, B. S. da; GOMES, N. T.; BAHIENSE, A. V.; OLIVEIRA, R. P. de .; ALEXANDRE, J. Soil-cement brick: incorporation of waste and feasibility in civil construction in Brazil. Research, Society and Development, [S. l.], v. 11, n. 2, p. e19011225605, 2022. DOI: 10.33448/rsd-v11i2.25605. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/25605. Acesso em: 21 jun. 2024.

Issue

Section

Engineerings