Modeling and simulation of pyrolysis of sisal residue in transient regime

Authors

DOI:

https://doi.org/10.33448/rsd-v9i3.2647

Keywords:

Particle; Modeling; Thermal properties.

Abstract

This study presents a transient mathematical model capable of predicting coal production in a fast pyrolysis process from a fluidized bed reactor. The model was developed from the thermal decomposition of a sisal particle and its solution depended on data not reported in the literature. The convective coefficient of the reaction medium was found from pilot unit experimental data involving heats given and dissipated by the reaction system. The surface temperature of the particle was measured in a new bench test, in which some particles were pyrolysis transformed at a fixed reaction temperature. The surface temperature of a set of particles was measured at each reaction time, as well as their diameters and masses. The particle specific mass was measured with the aid of gas pycnometry, using the particles obtained in the surface temperature experiment. From the results of the particle specific diameters and mass, it was possible to determine their calorific capacities. The system of equations obtained was solved in MATLAB environment, obtaining surface temperature and particle mass profiles throughout the reaction. The data needed to calculate the theoretical carbon mass of a pyrolysis pilot unit was the particle diameter obtained from the model simulation and the resulting particle velocities in the reactor obtained from a force balance in a particle. The calculated particle residence time was 35 s and the calculated coal mass had a discrepancy of 6.38% compared to data collected at the pilot production unit. These results validate the properties, throughout the reaction, of the particle of the sisal residue found experimentally and by means of calculations.

Author Biography

Carlos Augusto de Moraes Pires, Universidade Federal da Bahia

 

 

References

Blokhin AV, Voitkevich OV, Kabo GJ, Paulechka YU, Shishonok MV, Kabo AG, et al. Thermodynamic properties of plant biomass components. Heat capacity, combustion energy, and gasification equilibria of cellulose. J Chem Eng , 2011; 3523–31.

Bridgwater, A.V.; Meier B, D.; Radlein C, D. An overview of fast pyrolysis of biomass, p. 1502, 1994. Organic Geochemistry 30, 1999. p.1479±1493

Bevilaqua, D. B., Rambo, M. K. D., Rizzetti, T. M., Cardoso, A. L., Martins, A.F.. Cleaner production: Levulinic acid from rice husks. Journal of Cleaner Production,v. 47, 2013.

Bridgwater, A. V. Review of Thermochemical Biomass Conversion. Energy Research Group, Aston university, Birmingham, Crown Copyright, 2011.

Bridgwater, A.V.; Meier B, D.; Radlein C, D. An overview of fast pyrolysis of biomass, p. 1502, 1994. Organic Geochemistry 30, 1999. p.1479±1493

Bridgwater, A. V. Production of high grade fuels and chemicals from catalytic pyrolysis of biomass. Catalysis Today, no29, Elsevier, 1996. pp.285-295.

Cantalino, A. T., Silva, E. A., Santana, M.. Sustainability of Sisal Cultivation in Brazil Using Co-Products and Wastes. Journal of Agricultural Science, v. 7, n. 7, p. 64–75, 2015.

Capucine, D., Rodica, C., Guillaume, G., Authier, T. Heat capacity measurements of various biomass types and pyrolysis residues. Fuel 115 (2014) 644–651.

Carvalho, N. L., Bortolini, J. G., Barcellos, A. L. Biocombustíveis: Uma Opção Para o Desenvolvimento Sustentável. GEDECON - Gestão e Desenvolvimento de Contexto, IV Fórum de Sustentabilidade, Abril 2015.

Centi, G., Santen, R. A (editores). Catalysis for renewables: from feedstock to energy production. Wiley-VCH, Weinheim, 423 pp. 2007

Connor, M. A. Advances in thermochemical biomass conversion, p. 1502, 1994.

Cremasco, M.A. Operações Unitárias em Sistemas Particulados e Fluidomecânicos. São Paulo: Editora Blücher, 2012.

Dellaert, S. N. C. (2014). Sustainability Assessment of the Production of Sisal fiber in Brazil. 2014.84 p. Master thesis (M.Sc. Sustainable Development: Energy and Resources ). Faculty of Geosciences, Utrecht University.

Eichler, P.; Santos, F.; Toledo, M.; Zerbin, P.; Schmitz, G.; Alves, C.; Ries, L.; Gomes, F.,. Produção do Biometanol Via Geseificação de Biomassa Lignocelulósica. Quimíca Nova, Maio 2015.

Esposito, D., Antonietti, M. Redefining biorefinery: the search for unconventional building blocks for materials. Chemical Society Review, v. 44, 2015.

Ferrari, R. A.; Oliveira, V. S.; Scabio, A. Biodiesel de soja-taxa de conversão em ésteres etílicos, caracterização físico-química e consumo em gerador de energia. Química Nova, Vol. 28, No. 1, 19-23, 2005.

Yan, K., Jarvis, C., G,U, J.,Yan, Y.. Production and catalytic transformation of levulinic acid: A platform for speciality chemicals and fuels. Renewable and Sustainable Energy Reviews, v. 51, 2015.

Yan, L., Greenwood, A. A., Hossain, A., Yang, B. A comprehensive mechanistic kinetic model for dilute acid hydrolysis of switchgrass cellulose to glucose, 5-HMF and levulinic acid. The Royal Society of Chemistry, v. 4, n. 45, p. 23492, 2014.

Goldemberg, J.; Biomassa e energia Science 2007, Revista Química nova, São Paulo , 315, 808.

Huber, G. W.;Corma, A., 2007. "Synergies between bio- and oil refineries for the production of fuels from biomass". Angewandte Chemie - International Edition, v. 46, n. 38, p. 7184-7201

Huber, G. W.;IBORRA, S.;CORMA, A., 2006. "Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering". Chemical Reviews, v. 106, n. 9, p. 4044-4098

Incropera F. P., De Witt, D. P., Fundamentos Transferência de Calor e de Massa, 7ª edição. Guanabara Koogan, 2014.

Kaye, B. H. Particle Image Anaíyús, ASM Handbook, v. 7, p. 259-273, 1998.

Kirkwood BR, Sterne JAC. Essential medical statistics. 2nd ed. Malden: Blackwell Science, 2003.

Klass, D. L. Biomass for renewable energy, fuels, and chemicals.1 st Edition. San Diego, Califórnia, USA. Academic Press – An Imprint of Elsevier, 1998, 651 p.

Leite, R.C.; Leal. M.V.; O Biocombustível no Brasil. Novos Estudos. São Paulo, v. 78, Jul 2007. Pp . 1-2.

Martins, M. A. Fibra de Sisal: Mercerização, Acetilação e Aplicação em Compósitos de Borracha de Pneu Triturado. Tese de Doutorado, Universidade Estadual de Campinas, Brasil, 2001.

Niemelã, P,; Tolvanen, H,; Saarinen, T.; Leppanen, A,; Joronen, T. CFD based reactivity parameter determination for biomass particles of multiple size ranges in high heating rate devolatilization. All rights reserved. Energy 128 (2017) 676 e 687.

Rajika, J. K. A. T.; Narayana, M. Modelling and simulation of wood chip combustion in a hot air generator system. SpringerPlus (2016) 5:1166.

Sharifzadeh, M.; Sadeqzadeh, M.; Guo, M.; Borhani, T.; Konda, M.; Garcia., M.; Wang, L.; Hallett, J.; Shah, N. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Elsevier Ltd. All rights reserved, 2019.

Vissotto, J. P.; Neves, R. C.; Sanchez, C. G. Gaseificação de serragem de pinus em leito fluidizado. Revista Ciência e Tecnologia, v. volume 18, p. n.32, p.19-24, Junho 2015.

Varma, A. K., Mondal, P. Physicochemical characterization and kinetic study of pine needle for pyrolysis process, J Therm Anal Calorim (2016) 124:487–497.

Wang, J.; Lian, W.; Li, P.; Zhang, Z.; Yang, J.; Hao, X.; Huang, W.; Guan, G. Simulation of pyrolysis in low rank coal particle by using DAEM kinetics model: Reaction behavior and heat transfer. 0016-2361/_2017 Elsevier Ltd. All rights reserved

Webb, P.A., Orr, C., 1997. Analytical Methods in Fine Particle Technology. Micromeritics Instrument Corporation, USA, 301 pp.

Gibou, F., Fedkiw, R., Caflisch, R., Osher, S., 2003. A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19, 183–199.

Gibou, F., Fedkiw, R.P., Cheng, L.T., Kang, M., 2002. A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176, 205–227.

Mostafa, S., Abdelkader, H., Eric, C., Anthony, W. Coupling the fictitious domain and sharp interface methods for the simulation of convective mass transfer around reactive particles: Towards a reactive Sherwood number correlation for dilute systems. Chemical Engineering Science 198 (2019) 334–351.

Bruchmüller, J., Vanwachem, B.G.M., Gu, S., Luo, K.H., Brown, R.C.,2012.Modeling the thermo chemical degradation of biomass inside a fast pyrolysis fluidized bed reactor. AIChEJ.58,3030–3042.

Lan, X., Xu, C., Wang, G., Wu, L., Gao, J., 2009.CFD modeling of gas–solid flow and cracking reaction in two-stage riser FCC reactors. Chem. Eng. Sci.64, 3847–3858.

Shi, Y., Yu, Z., Shao, X., 2011. Combination of the direct-forcing fictitious domain

method and the sharp interface method for the three-dimensional dielectrophoresis of particles. Powder Technol. 210, 52–59.

Liu, X.D., Fedkiw, R.P., Kang, M., 2000. A boundary condition capturing method for

Poisson’s equation on irregular domains. J. Comput. Phys. 160, 151–178.

Published

27/02/2020

How to Cite

PEREIRA, T. de O.; PIRES, C. A. de M.; PASSOS SANTOS, D. B. Modeling and simulation of pyrolysis of sisal residue in transient regime. Research, Society and Development, [S. l.], v. 9, n. 3, p. e121932647, 2020. DOI: 10.33448/rsd-v9i3.2647. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/2647. Acesso em: 19 apr. 2024.

Issue

Section

Engineerings