Multifunctional rhizobacteria: use in agriculture

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.26971

Keywords:

Sustainability; Growth promoting; Mechanism of action; Co-inoculation.

Abstract

The use of innovative and sustainable technologies that excel in the development of productive agricultural systems, such as multifunctional rhizobacteria, are essential to ensure food safety and quality. Therefore, this theoretical study, carried out through an exploratory bibliographic research and qualitative approach, aimed to bring information regarding multifunctional rhizobacteria, addressing the general aspects, main characteristics, some genera of agricultural importance, their main mechanisms of action and the importance of co-inoculation. Multifunctional rhizobacteria are rhizospheric, endophytic or symbiotic bacteria that can improve plant growth, enhancing productivity. The use of these bacteria in agricultural systems has proved to be an innovative and sustainable technology due to different mechanisms of action, which can be direct or indirect, to benefit plants and the environment. Multifunctional rhizobacteria promote plant growth and suppression of diseases and, therefore, make it possible to reduce the use of synthetic inputs such as fertilizers and pesticides. There are different genera of multifunctional rhizobacteria and they can show synergism and, therefore, greater efficiency using the co-inoculation technique. This technique consists of adding more than one recognized beneficial microorganism to plants, to maximize their contribution. Co-inoculation provides several benefits for the greater development of plants, such as the increase in the root system, which allows better uptake of fertilizers, favors the plant in situations of water deficiency and increases productivity. However, several challenges still need to be overcome, such as the selection of efficient strains for specific crops, compatibility with products used in seed treatment, and obtaining consistent agronomic results under field conditions. Therefore, studies in this direction are very important to increase knowledge about multifunctional rhizobacteria and contribute to making Mayan agricultural systems efficient and sustainable.

References

Abhilash, P. C. C., Dubey, R. K., Tripathi, V., Gupta, V. K. & Singh, H. B. (2016). Plant Growth-Promoting Microorganisms for Environmental Sustainability. Trends in Biotechnology, 34 (11), 847-850

Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King saud University-science, 26(1), 1-20.

Ahn, I. P., Lee, S. W., Kim, M. G., Park, S. R., Hwang, D. J., & Bae, S. C. (2011). Priming by rhizobacterium protects tomato plants from biotrophic and necrotrophic pathogen infections through multiple defense mechanisms. Molecules and cells, 32(1), 7-14.

Atieno, M., Herrmann, L., Okalebo, R., & Lesueur, D. (2012). Efficiency of different formulations of Bradyrhizobium japonicum and effect of co-inoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicum. World Journal of Microbiology and Biotechnology, 28(7), 2541-2550.

Arruda, L. M. (2012). Seleção e caracterização de rizobactérias promotoras de crescimento de milho cultivadas no Rio Grande do Sul.

Bárbaro, I. M., Brancalião, S. R., Ticelli, M., Miguel, F. B., & Silva, J. D. (2008). Técnica alternativa: co-inoculação de soja com Azospirillum e Bradyrhizobium visando incremento de produtividade. Artigo em Hypertexto. Disponível em:< http://www. infobibos. com/Artigos/2008_4/coinoculacao/index. htm>. Acessado em, 10 jan 2022.

Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327-1350.

Bottini, R., Fulchieri, M., Pearce, D., & Pharis, R. P. (1989). Identification of gibberellins A1, A3, and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiology, 90(1), 45-47.

Bitas, V., Kim, H. S., Bennett, J. W., & Kang, S. (2013). Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Molecular Plant-Microbe Interactions, 26(8), 835-843.

Braga Júnior, G. M. (2015). Eficiência de Bacillus subtilis no biocontrole de fitopatógenos e promotor de crescimento vegetal.

Brito, T. S., Buss, L. A., Carvalho, J. P. F., Eberling, T., Martinez, A., Guimaraes, V. F., & Chaves, E. I. D. (2018). Growth promotion of Burkholderia ambifaria associated to nitrogen fertilization in the initial development of corn. J Agric Sci, 10(6), 123-135.

Bubanz, H. C. S. (2018). Potencial de rizobactérias para a promoção de crescimento vegetal.

Bulegoni, L. G., Rampim, L., Klein, J., Kestring, D., Guimarães, V. F., Battistus, A. G., & Inagaki, A. M. (2016). Componentes de produção e produtividade da cultura da soja submetida à inoculação de Bradyrhizobium e Azospirillum. Terra Latinoamericana, 34(2), 169-176.

Cacciari, I., Lippi, D., Pietrosanti, T., & Pietrosanti, W. (1989). Phytohormone-like substances produced by single and mixed diazotrophic cultures of Azospirillum and Arthrobacter. Plant and soil, 115(1), 151-153.

Campanhola, C., & Bettiol, W. (2003). Métodos alternativos de controle fitossanitário. Jaguariúna: Embrapa Meio Ambiente, 2003.

Cantarella, H. (2007). Nitrogênio. Fertilidade do solo, 1, 375-470.

Cardozo, R. B.; Araújo, F. F. (2011). Multiplicação de Bacillus subtilis em vinhaça e viabilidade no controle da meloidoginose, em cana-de-açúcar. Revista Brasileira de Engenharia Agrícola e Ambiental, 15( 12), 1283–1288.

Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and environmental microbiology, 71(9), 4951-4959.

Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5), 669-678.

Crozier, A., Arruda, P., Jasmim, J. M., Monteiro, A. M., & Sandberg, G. (1988). Analysis of indole-3-acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Applied and Environmental Microbiology, 54(11), 2833-2837.

Duca, D.; Lorv, J.; Patten, C. L.; Rose, D.; Glick, B. R. (2014). Ácido indol-3-acético nas interações planta-micróbio. Antonie van Leeuwenhoek, 106, 85-125.

El-Esawi, M. A., Elkelish, A., Soliman, M., Elansary, H. O., Zaid, A., & Wani, S. H. (2020). Serratia marcescens BM1 enhances cadmium stress tolerance and phytoremediation potential of soybean through modulation of osmolytes, leaf gas exchange, antioxidant machinery, and stress-responsive genes expression. Antioxidants, 9(1), 43.

Esitken, A., Yildiz, H. E., Ercisli, S., Donmez, M. F., Turan, M., & Gunes, A. (2010). Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia horticulturae, 124(1), 62-66.

Fageria, N. K. (2014). Yield and yield components and phosphorus use efficiency of lowland rice genotypes. Journal of plant nutrition, 37(7), 979-989.

FAO – Food and Agriculture Organization. Dados sobre alimentação e agricultura. FAOSTAT (2019). http://www.fao.org/faostat/en/#data/QC/visualize.

Farag, M. A., Zhang, H., & Ryu, C. M. (2013). Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. Journal of chemical ecology, 39(7), 1007-1018.

Ferlini, H. A. (2006). Co-Inoculación en Soja (Glicyne max) con Bradyrhizobium japonicum y Azospirillum brasilense. [S.l.: s.n.]. ttps://www.engormix.com/agricultura/articulos/co-inoculacion-en-soja-t26446.htm>

Ferreira, E. P. D. B., Silva, O. F. D., & Wander, A. E. (2020). Economics of rhizobia and azospirilla co-inoculation in irrigated common bean in commercial and family farming. , 55.

Galindo, F. S., Teixeira, M. C. M., Buzetti, S., Santini, J. M. K., Alves, C. J., Nogueira, L. M., ... & Bellotte, J. L. M. (2016). Corn yield and foliar diagnosis affected by nitrogen fertilization and inoculation with Azospirillum brasilense. Revista Brasileira de Ciência do Solo, 40.

Galindo, F. S., Teixeira, M., Buzetti, S., Ludkiewicz, M. G., Rosa, P. A., & Tritapepe, C. A. (2018). Technical and economic viability of co-inoculation with Azospirillum brasilense in soybean cultivars in the Cerrado. Revista Brasileira de Engenharia Agrícola e Ambiental, 22, 51-56.

Gerlach, G. A. X. (2017). Leguminosas em consórcio com milho segunda safra e o seu efeito no manejo do nitrogênio na soja e arroz de terras altas cultivados em sucessão.

Gil, A. C. Como elaborar projetos de pesquisa. (5a ed.), São Paulo: Atlas, 2018.

Gitti, D. C., Arf, O., Kaneko, F. H., Rodrigues, R. A. F., Buzetti, S., Portugal, J. R., & Corsini, D. C. D. C. (2012). Inoculação de Azospirillum brasilense em cultivares de feijões cultivados no inverno. Agrarian, 5(15), 36-46.

Gitti, D. D. C. (2015). Inoculação e coinoculação na cultura da soja. Tecnologia e Produção: Soja, 2015, 15-28.

Glick, BR, Holguin, G., Patten, CL, & Penrose, DM (1999). Mecanismos bioquímicos e genéticos usados por bactérias promotoras de crescimento de plantas . Mundial Científico.

Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012.

Gomes, J. P. A., Souza, M. N., Júnior, A. C. S., & Moulin, M. M. Uso de microrganismos eficientes como alternativa para agricultura sustentável: um referencial teórico.

Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil biology and biochemistry, 37(3), 395-412.

Grimont, F. & Grimont P. A. D. (2006). The Genus Serratia. Prokaryotes. (6), 219-244.

Harthmann, O. E. L. (2009). Microbiolização de sementes com rizobactérias na produção de cebola.

Hungria, M., Campo, R. J., & Mendes, I. D. C. (2001). Fixação biológica do nitrogênio na cultura da soja. Embrapa Soja-Circular Técnica (INFOTECA-E).

Hungria, M., Nogueira, M. A., & Araujo, R. S. (2013). Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biology and Fertility of Soils, 49(7), 791-801.

Hungria, M., Chibeba, A. M., Guimarães, M. F., Brito, O. R., Araújo, R. S. & Nogueira, M. A. (2015). Inoculação de soja com bradyrhizobium e azospirillum promove nodulação precoce. In Embrapa Soja-Artigo em anais de congresso (ALICE). In: CONGRESSO BRASILEIRO DE SOJA, 7.; MERCOSOJA, 2015, Florianópolis. Tecnologia e mercado global: perspectivas para soja: anais. Londrina: Embrapa Soja, 2015..

Kang, S. M., Khan, A. L., Wagas, M., Asaf, S., Lee, K. E., Park, Y. G., Kim, A. Y., Khan, M. A., You, Y. H. & Lee, I. J. (2019). Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. Journal of Plant Interactions, 14 (1), 416-423.

Kappes, C., & Zancanaro, L. (2014). Manejo da fertilidade do solo em sistemas de produção no Mato Grosso. In Congresso Nacional De Milho E Sorgo (Vol. 3, pp. 358-381).

Kloepper, J. W. (2003, October). A review of mechanisms for plant growth promotion by PGPR. In 6th international PGPR workshop (Vol. 10, pp. 5-10).

Kumudini, S., & Singh, G. (2010). Soybean growth and development. The soybean: botany, production and uses, 48-73.

Jog, R., Pandya, M., Nareshkumar, G., & Rajkumar, S. (2014). Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology, 160(4), 778-788.

Júnior, D. G. F., & Queiroz, E. H. G. (2021). Inoculação de Azospirillum brasilense na cultura do milho: aliando produtividade e sustentabilidade.

Junior, A. F. C., Junior, G. M. B. J. B., Lima, C. A. L., Martins, A. L. L. M., Souza, M. C. S., & Chagas, L. F. B. C. (2022). Bacillus subtilis como inoculante promotor de crescimento vegetal em soja. Diversitas Journal, 7(1), 0001-0016.

Lakshmanan, V., Shantharaj, D., Li, G., Seyfferth, A. L., Sherrier, D. J., & Bais, H. P. (2015). A natural rice rhizospheric bacterium abates arsenic accumulation in rice (Oryza sativa L.). Planta, 242(4), 1037-1050.

Lee, J., Postmaster, A., Soon, H. P., Keast, D., & Carson, K. C. (2012). Siderophore production by actinomycetes isolates from two soil sites in Western Australia. Biometals, 25(2), 285-296.

Lima, F. (2010). Bacillus subtilis e níveis de nitrogênio sobre o desenvolvimento e a produtividade do milho. Programa de Pós-Graduação em Agronomia do Centro de Ciências Agrárias da Universidade Federal do Piauí. Teresina, PI.

Lin, Y., Du, D., Si, C., Zhao, Q., Li, Z., & Li, P. (2014). Potential biocontrol Bacillus sp. strains isolated by an improved method from vinegar waste compost exhibit antibiosis against fungal pathogens and promote growth of cucumbers. Biological Control, 71, 7-15.

Meena, V. S., Meena, S. K., Verma, J. P., Kumar, A., Aeron, A., Mishra, P. K., ... & Dotaniya, M. L. (2017). Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecological Engineering, 107, 8-32.

Mehta, P., Walia, A., Kulshrestha, S., Chauhan, A., & Shirkot, C. K. (2015). Efficiency of plant growth‐promoting P‐solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. Journal of basic microbiology, 55(1), 33-44.

Moreno-Ramírez, L., González-Mendoza, D., Cecena-Duran, C., & Grimaldo-Juarez, O. (2015). Molecular identification of phosphate-solubilizing native bacteria isolated from the rhizosphere of Prosopis glandulosa in Mexicali valley. Genetics and Molecular Research, 14(1), 2793-2798.

Nascente, A. S., de Filippi, M. C. C., Lanna, A. C., de Souza, A. C. A., da Silva Lobo, V. L., & da Silva, G. B. (2017). Biomass, gas exchange, and nutrient contents in upland rice plants affected by application forms of microorganism growth promoters. Environmental Science and Pollution Research, 24(3), 2956-2965.

Nascente, A. S., de Filippi, M. C. C., Lanna, A. C., de Sousa, T. P., de Souza, A. C. A., da Silva Lobo, V. L., & da Silva, G. B. (2017). Effects of beneficial microorganisms on lowland rice development. Environmental Science and Pollution Research, 24(32), 25233-25242.

Nascente, A. S., Lanna, A. C., de Sousa, T. P., Chaibub, A. A., de Souza, A. C. A., & de Filippi, M. C. C. (2019). N fertilizer dose-dependent efficiency of Serratia spp. for improving growth and yield of upland rice (Oryza sativa L.). International Journal of Plant Production, 13(3), 217-226.

Nihorimbere, V., Ongena, M., Smargiassi, M., & Thonart, P. (2011). Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnologie, Agronomie, Société et Environnement, 15(2), 327-337.

de Oliveira, A. L. M., dos Reis Costa, K., Cristina, D., Silva, B., & Zuluaga, M. Y. A. (2014a). Biodiversity of soil bacteria and its applications for a sustainable agriculture.

de Oliveira, A. L. M., dos Reis Costa, K., Ferreira, D. C., Milani, K. M. L., dos Santos, O. J. A. P., Silva, M. B., & Zuluaga, M. Y. A. (2014b). Aplicações da biodiversidade bacteriana do solo para a sustentabilidade da agricultura. BBR-Biochemistry and Biotechnology Reports, 3(1), 56-77.

Oliveira, G. R. F., Silva, M. S., Proença, S. L., Bossolani, J. W., Camargo, J. A., Franco, F. S. & SÁ, M. E. (2017). Influence of Bacillus subtilis in nematodes biological control and production aspects of bean. Brazilian Journal of Biosystems Engineering, 11 (1), 47-58.

Oliveira, RP, Lima, SF, Alvarez, RDCF, Baldani, VLD, Oliveira, MP e Brasil, MS (2018). Inoculação de Azospirillum brasilense e manejo de fertilizante nitrogenado em milho. Revista Brasileira de Agricultura , 93 (3), 347-361.

Partida-Martinez, L. P. P., & Heil, M. (2011). The microbe-free plant: fact or artifact?. Frontiers in plant science, 2, 100.

Pereira A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia da pesquisa científica. UFSM.https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Picazevicz, A. A. C., Kusdra, J. F., & de Lima Moreno, A. (2019). Crescimento do milho em resposta à rizobactérias, molibdênio e nitrogênio. Revista Ibero-Americana de Ciências Ambientais, 10(4), 167-174.

Pinho, R. S. C., Pozzebon, B. C., Rodrigues, K. R. R., Arns, R. B., Alves, C. A. & Bergmann, M. B. (2020). Rizobactérias no controle de Sclerotinia sclerotiorum, e efeitos no desenvolvimento vegetativo de plântulas de soja. Colloquium Agrariae, 16 (4), 110-120

Raja Namasivayam, S. K., & Bharani, R. S. A. (2012). Effect of compost derived from decomposed fruit wastes by effective microorganism (EM) technology on plant growth parameters of Vigna mungo. J Bioremed Biodeg, 3(167), 2.

Reddy, P. P. (2013). Plant growth promoting rhizobacteria (PGPR): Recent advances in crop protection. Springer, India, 131-145.

Ribeiro, R.; Sei, F. B.; Leite, M.S. (2011). Bacillus subtilis: agente de controle biológico e promotor de crescimento em plantas. Equipe de Pesquisa e Desenvolvimento de Novozymes Turfal, 01.

Rodrigues, A. C., Antunes, J. E. L., de Medeiros, V. V., de França BARROS, B. G., & Figueiredo, M. D. V. B. (2012). Resposta da co-inoculação de bactérias promotoras de crescimento em plantas e Bradyrhizobium sp. em caupi. Bioscience journal, 28(1).

dos Santos FREITAS, S. Rizobactérias Promotoras do Crescimento de Plantas. Microbiota do Solo e Qualidade Ambiental, 1.

Santos, F. L. D. (2018). Inoculação e coinoculação de rizobactérias promotoras de crescimento em plantas de arroz, milho e trigo.

Singh, JS, Pandey, VC, & Singh, DP (2011). Microrganismos eficientes do solo: uma nova dimensão para a agricultura sustentável e o desenvolvimento ambiental. Agricultura, ecossistemas e meio ambiente , 140 (3-4), 339-353.

da Silva, A. F., de Carvalho, M. A. C., Schoninger, E. L., Monteiro, S., Caione, G., & Santos, P. A. (2011). Doses de inoculante e nitrogênio na semeadura da soja em área de primeiro cultivo. Bioscience Journal, 27(3).

Silva, C., Brito, T. L. D., Taniguchi, C. A., Lopes, L. A., Pinto, G. A., & de Carvalho, A. C. (2018). Growth-promoting potential of bacterial biomass in the banana micropropagated plants. Embrapa Agroindústria Tropical-Artigo em periódico indexado (ALICE).

Silva, M. A., Nascente, A. S., FILIPPI, M. C. C. D., Lanna, A. C., SILVA, G. B. D., & SILVA, J. F. A. E. (2020). Individual and combined growth-promoting microorganisms affect biomass production, gas exchange and nutrient content in soybean plants. Revista Caatinga, 33, 619-632.

Sousa, I. M., Nascente, A. S., & de Filippi, M. C. C. (2019). Bactérias promotoras do crescimento radicular em plântulas de dois cultivares de arroz irrigado por inundação. Embrapa Arroz e Feijão-Artigo em periódico indexado (ALICE).

de Souza, JEB, & de Brito Ferreira, EP (2017). Melhorando a sustentabilidade dos sistemas de produção de feijão por co-inoculação de rizóbio e azospirilla. Agricultura, Ecossistemas e Meio Ambiente , 237 , 250-257.

de Sousa, MA, de Oliveira, MM, Damin, V., & Ferreira, EPDB (2020). Produtividade e economia do feijoeiro inoculado em função da aplicação de nitrogênio em diferentes fases fenológicas. Journal of Soil Science and Plant Nutrition , 20 (4), 1848-1858.

Stefan, M., Munteanu, N., Stoleru, V., Mihasan, M., & Hritcu, L. (2013). Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Scientia Horticulturae, 151, 22-29.

Steffen, G. P. K., Maldaner, J., Missio, E. L. & Steffen, R. B. (2018). Trichoderma controla fitonematóides e aumenta produtividade da soja, Campos & Negócios. https://revistacampoenegocios.com.br/trichoderma-controla-fitonematoides-e-aumenta-produtividade-da-soja/

Taha, R. S., Mahdi, A. H., & Abd El-Rahman, H. A. (2016). Effect of biofertilizers as a partial substitute for mineral fertilizers on growth, anatomical structure, mineral elements and yield of wheat under newly reclaimed soil conditions. International J. Current Microbiology and Applied Sciences, 5(8), 458-469.

Verma, S. C., Ladha, J. K., & Tripathi, A. K. (2001). Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. Journal of biotechnology, 91(2-3), 127-141.

Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and soil, 255(2), 571-586.

Wang, D., Yang, S., Tang, F., & Zhu, H. (2012). Symbiosis specificity in the legume–rhizobial mutualism. Cellular microbiology, 14(3), 334-342.

Wang, C., Wang, Z., Qiao, X., Li, Z., Li, F., Chen, M., ... & Cui, H. (2013). Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS microbiology letters, 341(1), 45-51.

Zuffo, A. M., Rezende, P. M., Bruzi, A. T., Oliveira, N. T., Soares, I. O., Neto, G. F., ... & Silva, L. O. (2015). Co-inoculation of Bradyrhizobium japonicum and Azospirillum brasilense in the soybean crop. Revista de Ciências Agrárias, 38(1), 87-93.

Zuffo, A. M., Bruzi, A. T., de Rezende, P. M., Bianchi, M. C., Zambiazzi, E. V., Soares, I. O., ... & Vilela, G. L. D. (2016). Morphoagronomic and productive traits of RR soybean due to inoculation via Azospirillum brasilense groove. African Journal of Microbiology Research, 10(13), 438-444.

Published

10/03/2022

How to Cite

SILVA, M. A. .; NASCENTE, A. S. .; REZENDE, C. C.; FRASCA, L. L. de M. .; FILIPPI, M. C. C. de .; LANNA, A. C.; FERREIRA, E. P. de B. .; CRUZ, D. R. C. .; LACERDA, M. C. .; FERREIRA, E. A. S. . Multifunctional rhizobacteria: use in agriculture. Research, Society and Development, [S. l.], v. 11, n. 4, p. e3111426971, 2022. DOI: 10.33448/rsd-v11i4.26971. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/26971. Acesso em: 20 apr. 2024.

Issue

Section

Agrarian and Biological Sciences