Factors affecting the cryopreservation of oocytes and embryos in buffalo (Bubalus bubalis): A review

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27337

Keywords:

Cryoinjuries; Embryo quality; Semen; Sexed embryos; Vitrification.

Abstract

Cryopreservation of oocytes and embryos is a supplementary technique for in vivo and in vitro embryo production. In the last decade, the technique has been improved but did not achieve a satisfactory commercial level. Also, the results were variable. The pregnancy and live birth rates were 16 to 52% and 5.3 to 26.9% after implantation of vitrified embryos, respectively (from the year 1993 to 2020). In final consideration, the quality of oocytes and embryos is the most important factor to obtain better results after cryopreservation. The addition of antioxidant and lipid-depleting agents to the medium is a factor that improves cryogenic tolerance. Additionally, two-step vitrification is a reliable method for cryopreservation. Studying epigenetic effects and introducing lipidomic, transcriptomic and proteomic technologies can help improve this technology.

Author Biographies

Maiana Silva Chaves, State University of Ceará

Laboratory of Physiology and Control of Reproduction and Professor

 

Ana Flávia Bezerra Silva, State University of Ceará

State University of Cear and PhD Scholar

William Gomes Vale, State University of Ceará

State University of Ceará and Professor

Natanael Aguiar Braga Negreiros, State University of Ceará

State University of Ceará and Master Student

Irving Mitchell Laines Arcce, State University of Ceará

State University of Ceará and Master Student

Luciana Magalhães Melo, State University of Ceará

State University of Ceará and Professor

Vicente José de Figueirêdo Freitas, State University of Ceará

Laboratory of Physiology and Control of Reproduction; Professor, Cordenator of lab and Dean of veterinary faculty of State University of Ceará 

References

Abd-Allah S. M. (2009). In vitro production of buffalo embryos from stepwise vitrified immature oocytes. Veterinaria Italiana, 45(3), 425-429.

Abd-Allah, S. M. (2011). Stepwise vitrification of in vitro produced buffalo blastocysts. Archivos de Zootecnia, 60(231), 617-624. https://dx.doi.org/10.4321/S0004-05922011000300050

Attanasio, L., Boccia, L., Vajta, G., Kuwayama, M., Campanile, G., Zicarelli, L., Neglia, G., & Gasparrini, B. (2010). Cryotop vitrification of buffalo (Bubalus bubalis) in vitro matured oocytes: effects of cryoprotectant concentrations and warming procedures. Reproduction in Domestic Animals, 45(6), 997-1002. https://doi.org/10.1111/j.1439-0531.2009.01475.x

Barnwell, C. V., Farin, P. W., Ashwell, C. M., Farmer, W. T., Galphin, S. P., Jr, & Farin, C. E. (2016). Differences in mRNA populations of short and long bovine conceptuses on Day 15 of gestation. Molecular Reproduction and Development, 83(5), 424-441. https://doi.org/10.1002/mrd.22640

Barrera, N., Dos Santos Neto, P. C., Cuadro, F., Bosolasco, D., Mulet, A. P., Crispo, M., & Menchaca, A. (2018). Impact of delipidated estrous sheep serum supplementation on in vitro maturation, cryotolerance and endoplasmic reticulum stress gene expression of sheep oocytes. PloS One, 13(6), e0198742. https://doi.org/10.1371/journal.pone.0198742

Boccia, L., De Rosa, A., Attanasio, L., Neglia, G., Vecchio, D., Campanile, G., Zicarelli L., & Gasparrini, B. (2013). Developmental Speed Affects the Cryotolerance of InVitro Produced Buffalo (Babalus bubalis) Embryos. Italian Journal of Animal Science, 12(4), e80. https://doi.org/10.4081/ijas.2013.e80

Boonkusol, D., Faisaikarm, T., Dinnyes, A., & Kitiyanant, Y. (2007). Effects of vitrification procedures on subsequent development and ultrastructure of in vitro-matured swamp buffalo (Bubalus bubalis) oocytes. Reproduction, Fertility, and Development, 19(2), 383-391. https://doi.org/10.1071/rd06097

Cassano, P., Flück, M., Giovanna Sciancalepore, A., Pesce, V., Calvani, M., Hoppeler, H., Cantatore, P., & Gadaleta, M. N., (2010). Muscle unloading potentiates the effects of acetyl-L-carnitine on the slow oxidative muscle phenotype. BioFactors 36(1), 70-77. https://doi.org/10.1002/biof.74

Dhali, A., Manik, R. S., Das, S. K., Singla, S. K., & Palta, P. (2000). Post-vitrification survival and in vitro maturation rate of buffalo (Bubalus bubalis) oocytes: effect of ethylene glycol concentration and exposure time. Animal Reproduction Science, 63(3-4), 159–165.

Estudillo, E., Jiménez, A., Bustamante-Nieves, P. E., Palacios-Reyes, C., Velasco, I., & López-Ornelas, A. (2021). Cryopreservation of Gametes and Embryos and Their Molecular Changes. International Journal of Molecular Sciences, 22(19), 10864. https://doi.org/10.3390/ijms221910864

Ferreira, E. M., Vireque, A. A., Adona, P. R., Meirelles, F. V., Ferriani, R. A., & Navarro, P. A. (2009). Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology, 71(5), 836-848.

Gamarra, P. F., Rendón, V. V., Chávez, R. A., Perez, S. L., Walter C. M., & Berdugo, G., J. (2015). Establishing an in vitro production program for buffalo embryos (Bubalus bubalis) in Colombia. Revista MVZ Córdoba, 20(1), 4495-4504. https://doi.org/10.21897/rmvz.80

Gasparrini, B., Attanasio, L., De Rosa, A., Monaco, E., Di Palo, R., & Campanile, G. (2007). Cryopreservation of in vitro matured buffalo (Bubalus bubalis) oocytes by minimum volumes vitrification methods. Animal Reproduction Science, 98(3-4), 335-342. https://doi.org/10.1016/j.anireprosci.2006.04.046

Gautam, S. K., Verma, V., Palta, P., Chauhan, M. S., & Manik, R. S. (2008). Effect of type of cryoprotectant on morphology and developmental competence of in vitro-matured buffalo (Bubalus bubalis) oocytes subjected to slow freezing or vitrification. Reproduction, Fertility, and Development, 20(4), 490-496. https://doi.org/10.1071/rd07203

Ghys, E., Dallemagne, M., De Troy, D., Sauvegarde, C., Errachid, A., & Donnay, I. (2016). Female bovine blastocysts are more prone to apoptosis than male ones. Theriogenology, 85(4), 591-600.

Gupta, A., Singh, J., Dufort, I., Robert, C., Dias, F., & Anzar, M. (2017). Transcriptomic difference in bovine blastocysts following vitrification and slow freezing at morula stage. PloS One, 12(11), e0187268. https://doi.org/10.1371/journal.pone.0187268

Gustina, S., Hasbi, H., Karja, N., Setiadi, M. A., & Supriatna, I. (2017). Ultrastructure changes in buffalo (Bubalus bubalis) oocytes before and after maturation in vitro with sericin. Animal Science Journal, 88(12), 1911-1915. https://doi.org/10.1111/asj.12839

Hochi S. (2016). Microtubule assembly crucial to bovine embryonic development in assisted reproductive technologies. Animal Science Journal, 87(9), 1076–1083. https://doi.org/10.1111/asj.12621

Hufana-Duran, D., Pedro, P. B., Salazar Jr., A.L., Venturina, H.V., Duran, P.G., Takahashi, Y., Kanai, Y., & Cruz. L.C. (2008). Twin calf production in water buffaloes following non-surgical transfer of in vitro-produced-vitrifed embryos. Philippine Journal of Science, 137, 99-104.

Hufana-Duran, D., Pedro, P. B., Venturina, H. V., Hufana, R. D., Salazar, A. L., Duran, P. G., & Cruz, L. C. (2004). Post-warming hatching and birth of live calves following transfer of in vitro-derived vitrified water buffalo (Bubalus bubalis) embryos. Theriogenology, 61(7-8), 1429-1439. https://doi.org/10.1016/j.theriogenology.2003.08.011

Jainudeen, M. R., Wahid, H., & Hafez, E. S. E. (2016). Ovulation Induction, Embryo Production and Transfer, In Reproduction in Farm Animals (Ed., Hafez, E.S.E & Hafez, B., (pp. 405-430). São Paulo, Brasil.

Kasiraj, R., Misra, A. K., Mutha Rao, M., Jaiswal, R. S., & Rangareddi, N. S. (1993). Successful culmination of pregnancy and live birth following the transfer of frozen-thawed buffalo embryos. Theriogenology, 39(5), 1187-1192. https://doi.org/10.1016/0093-691x(93)90016-x

Khalil, W. A, Gabr, A., Shamiah, M., El-Haif, A.M.A., & Abdel-Khalek, A.E. (2014). In vitro Maturation, Fertilization and Embryo Development of Immature Buffalo Oocytes Vitrified by Different Cryodevice Types. Asian Journal of Animal and Veterinary Advances, 9, 428-439. https://scialert.net/abstract/?doi=ajava.2014.428.439

Kirillova, A., Smitz, J., Sukhikh, G. T., & Mazunin, I. (2021). The Role of Mitochondria in Oocyte Maturation. Cells, 10(9), 2484. https://doi.org/10.3390/cells10092484

Liang, X. W., Lu, Y. Q., Chen, M. T., Zhang, X. F., Lu, S. S., Zhang, M., Pang, C. Y., Huang, F. X., & Lu, K. H. (2008). In vitro embryo production in buffalo (Bubalus bubalis) using sexed sperm and oocytes from ovum pick up. Theriogenology, 69(7), 822-826. https://doi.org/10.1016/j.theriogenology.2007.11.021

Liang, Y. Y., Phermthai, T., Nagai, T., Somfai, T., & Parnpai, R. (2011). In vitro development of vitrified buffalo oocytes following parthenogenetic activation and intracytoplasmic sperm injection. Theriogenology, 75(9), 1652-1660. https://doi.org/10.1016/j.theriogenology.2010.12.028

Liang, Y., Rakwongrit, D., Phermthai, T., Somfai, T., Nagai, T., & Parnpai, R. (2012). Cryopreservation of immature buffalo oocytes: effects of cytochalasin B pretreatment on the efficiency of cryotop and solid surface vitrification methods. Animal Science Journal, 83(9), 630-638. https://doi.org/10.1111/j.1740-0929.2012.01013.x

Lowther, K. M., Weitzman, V. N., Maier, D., & Mehlmann, L. M. (2009). Maturation, fertilization, and the structure and function of the endoplasmic reticulum in cryopreserved mouse oocytes. Biology of Reproduction, 81(1), 147-154. https://doi.org/10.1095/biolreprod.108.072538

Mahmoud, K. G., Scholkamy, T. H., Ahmed, Y. F., Seidel, G. E., Jr, & Nawito, M. F. (2010). Effect of different combinations of cryoprotectants on in vitro maturation of immature buffalo (Bubalus bubalis) oocytes vitrified by straw and open-pulled straw methods. Reproduction in Domestic Animals, 45(4), 565-571. https://doi.org/10.1111/j.1439-0531.2008.01293.x

Mahmoud, K., Scholkamy, T., & Darwish, S. (2015). Improvement of vitrification of in vitro produced buffalo embryos with special reference to sex ratio following vitrification. Iranian Journal of Veterinary Research, 16(4), 325-330.

Manjunatha, B. M., Ravindra, J. P., Gupta, P. S., Devaraj, M., Honnappa, T. G., & Krishnaswamy, A. (2009). Post-thaw development of in vitro produced buffalo embryos cryopreserved by cytoskeletal stabilization and vitrification. Journal of Veterinary Science, 10(2), 153-156. https://doi.org/10.4142/jvs.2009.10.2.153

Mondadori, R. G., Santin, T. R., Fidelis, A. A., Name, K. P., da Silva, J. S., Rumpf, R., & Báo, S. N. (2010). Ultrastructure of in vitro oocyte maturation in buffalo (Bubalus bubalis). Zygote, 18(4), 309-314.

Moussa, M., Yang, C. Y., Zheng, H. Y., Li, M. Q., Yu, N. Q., Yan, S. F., Huang, J. X., & Shang, J. H. (2019). Vitrification alters cell adhesion related genes in pre-implantation buffalo embryos: Protective role of β-mercaptoethanol. Theriogenology, 125, 317-323. https://doi.org/10.1016/j.theriogenology.2018.11.013

Muñoz, M., Uyar, A., Correia, E., Díez, C., Fernandez-Gonzalez, A., Caamaño, J. N., Martínez-Bello, D., Trigal, B., Humblot, P., Ponsart, C., Guyader-Joly, C., Carrocera, S., Martin, D., Marquant Le Guienne, B., Seli, E., & Gomez, E. (2014). Prediction of pregnancy viability in bovine in vitro-produced embryos and recipient plasma with Fourier transform infrared spectroscopy. Journal of Dairy Science, 97(9), 5497-5507. https://doi.org/10.3168/jds.2014-8067

Nedambale, T. L., Dinnyés, A., Yang, X., & Tian, X. C. (2004). Bovine blastocyst development in vitro: timing, sex, and viability following vitrification. Biology of Reproduction, 71(5), 1671-1676. https://doi.org/10.1095/biolreprod.104.027987

Panyaboriban, S., Tharasanit, T., Chankitisakul, V., Swangchan-Uthai, T., & Techakumphu, M. (2018). Treatment with chemical delipidation forskolin prior to cryopreservation improves the survival rates of swamp buffalo (Bubalus bubalis) and bovine (Bos indicus) in vitro produced embryos. Cryobiology, 84, 46-51. https://doi.org/10.1016/j.cryobiol.2018.08.003

Parnpai, R., Liang, Y., Ketudat-Cairns, M., Somfai, T., & Nagai, T. (2016). Vitrification of buffalo oocytes and embryos. Theriogenology, 86(1), 214-220. https://doi.org/10.1016/j.theriogenology.2016.04.034

Paschoal, D. M., Sudano, M. J., Guastali, M. D., Dias Maziero, R. R., Crocomo, L. F., Oña Magalhães, L. C., da Silva Rascado, T., Martins, A., & da Cruz Landim-Alvarenga, F. (2014). Forskolin effect on the cryosurvival of in vitro-produced bovine embryos in the presence or absence of fetal calf serum. Zygote, 22(2), 146-157. https://doi.org/10.1017/S0967199412000354

Perea, F.G., & Inskeep, E. K. (2008). Infertility associated with the duration of luteal phasein postpartum cows. Archivos Latinoamericanos de Producción Animal, 16(3), 175-185.

Prentice, J. R., & Anzar, M. (2010). Cryopreservation of Mammalian oocyte for conservation of animal genetics. Veterinary Medicine International, 2011, 146405. https://doi.org/10.4061/2011/146405

Presicce, G.A. (2017). Embryo cryopreservation and pregnancy to term: The Buffalo (Bubalus bubalis) - Production and Research. Bentham eBooks imprint, Bentham Science Publishers-Sharjah, UAE.

Qin, N., Zhou, Z., Zhao, W., Zou, K., Shi, W., Yu, C., Liu, X., Dong, Z., Mao, Y., Liu, X., Sheng, J., Ding, G., Wu, Y., & Huang, H. (2021). Abnormal Glucose Metabolism in Male Mice Offspring Conceived by in vitro Fertilization and Frozen-Thawed Embryo Transfer. Frontiers in Cell and Developmental Biology, 9, 637781. https://doi.org/10.3389/fcell.2021.637781

Reader, K. L., Cox, N. R., Stanton, J. A., & Juengel, J. L. (2015). Effects of acetyl-L-carnitine on lamb oocyte blastocyst rate, ultrastructure, and mitochondrial DNA copy number. Theriogenology, 83(9), 1484-1492. https://doi.org/10.1016/j.theriogenology.2015.01.028

Reader, K. L., Stanton, J. L., & Juengel, J. L. (2017). The Role of Oocyte Organelles in Determining Developmental Competence. Biology, 6(3), 35. https://doi.org/10.3390/biology6030035

Saliba, W. P., Gimenes, L. U., Drumond, R. M., Bayão, H., Di Palo, R., Gasparrini, B., Rubessa, M., Baruselli, P. S., Sales, J., Bastianetto, E., Leite, R. C., & Alvim, M. (2020). "Which Factors Affect Pregnancy Until Calving and Pregnancy Loss in Buffalo Recipients of in vitro Produced Embryos?". Frontiers in Veterinary Science, 7, 577775. https://doi.org/10.3389/fvets.2020.577775

Saliba, W., Gimenes, L., Drumond, R., Bayão, H., Alvim, M., Baruselli, P., & Gasparrini, B. (2013) Efficiency of OPU-IVEP-ET of Fresh and Vitrified Embryos in Buffaloes. Buffalo Bulletin, 32, 385-388. http://hdl.handle.net/11449/113085

Sanches, B. V., Marinho, L. S., Filho, B. D., Pontes, J. H., Basso, A. C., Meirinhos, M. L., Silva-Santos, K. C., Ferreira, C. R., & Seneda, M. M. (2013). Cryosurvival and pregnancy rates after exposure of IVF-derived Bos indicus embryos to forskolin before vitrification. Theriogenology, 80(4), 372-377. https://doi.org/10.1016/j.theriogenology.2013.04.026

Sepand, M. R., Razavi-Azarkhiavi, K., Omidi, A., Zirak, M. R., Sabzevari, S., Kazemi, A. R., & Sabzevari, O. (2016). Effect of Acetyl-L-Carnitine on Antioxidant Status, Lipid Peroxidation, and Oxidative Damage of Arsenic in Rat. Biological Trace Element Research, 171(1), 107-115.

Sharma, R. K., Jerome, A., & Purohit, G.N. (2014). Reproductive Physiology of the Male and Female Buffalo. In Bubaline Theriogenology (Ed Purohit G. N.). International Veterinary Information Service, United States.

Sharma, G. T., & Loganathasamy, K. (2007). Effect of meiotic stages during in vitro maturation on the survival of vitrified-warmed buffalo oocytes. Veterinary Research Communications, 31(7), 881-893. https://doi.org/10.1007/s11259-007-0059-7

Shirazi, A., Naderi, M. M., Hassanpour, H., Heidari, M., Borjian, S., Sarvari, A., & Akhondi, M. M. (2016). The effect of ovine oocyte vitrification on expression of subset of genes involved in epigenetic modifications during oocyte maturation and early embryo development. Theriogenology, 86(9), 2136-2146. https://doi.org/10.1016/j.theriogenology.2016.07.005

Silva, A. F. B., Lima, L. F., Figueiredo, J. R. (2021). Strategies for improving follicular culture efficiency in vitro: Importance of medium supplementation and study of epigenetic changes. Research, Society and Development, 10(9), e22910918022. https://doi.org/10.33448/rsd-v10i9.18022.

Silva, A. R. N., Marques, T. C., Santos, E. C. S., Diesel, T. O., Macedo, I. M., Teixeira, R. C., Martins, C. F., Alves, B. G., & Gambarini, M. L. (2021). Resveratrol-supplemented holding or re-culture media improves viability of fresh or vitrified-warmed in vitro-derived bovine embryos. Research, Society and Development, 10(14), e367101422097. https://doi.org/10.33448/rsd-v10i14.22097

Silveira, M. M., Marques, T. C., Silva, M. A. P., & Leão, K. M. (2020). Development stage at packaging affects viability of in vitro produced bovine embryos. Research, Society and Development, 9, (6), e134963615. https://doi.org/10.33448/rsd-v9i6.3615

Soliman, W. T., El-Naby, A. S. A., Mahmoud, K. G., El-Khawagah, A. R., Kandiel, M. M., Abouel-Roos, M. E., Abdel-Ghaffar, A. E., & El Azab, A. I. (2018). Effect of buffalo bull breeds on developmental competence and vitrification of in vitro produced embryos. Asian Pacific Journal of Reproduction, 7, 270-273. http://www.apjr.net/text.asp?2018/7/6/270/246346

Stein, P., Savy, V., Williams, A. M., & Williams, C. J. (2020). Modulators of calcium signalling at fertilization. Open Biology, 10(7), 200118. https://doi.org/10.1098/rsob.200118

Sudano, M. J., Santos, V. G., Tata, A., Ferreira, C. R., Paschoal, D. M., Machado, R., Buratini, J., Eberlin, M. N., & Landim-Alvarenga, F. D. (2012). Phosphatidylcholine and sphingomyelin profiles vary in Bos taurus indicus and Bos taurus taurus in vitro- and in vivo-produced blastocysts. Biology of Reproduction, 87(6), 130. https://doi.org/10.1095/biolreprod.112.102897

Techakumphu, M., Sukavong, Y., Yienvisavakul, V., Buntaracha, B., Pharee, S., Intaramongkol, S., Apimeteetumrong, M., & Intaramongkol, J. (2001). The transfer of fresh and frozen embryos in an elite swamp buffalo herd. The Journal of Veterinary Medical Science, 63(8), 849-852. https://doi.org/10.1292/jvms.63.849

Tharasanit, T., & Thuwanut, P. (2021). Oocyte Cryopreservation in Domestic Animals and Humans: Principles, Techniques and Updated Outcomes. Animals: an open access journal from MDPI, 11(10), 2949. https://doi.org/10.3390/ani11102949

Wani, N. A., Maurya, S. N., Misra, A. K., Saxena, V. B., & Lakhchaura, B. D. (2004a). Effect of cryoprotectants and their concentration on in vitro development of vitrified-warmed immature oocytes in buffalo (Bubalus bubalis). Theriogenology, 61(5), 831-842. https://doi.org/10.1016/j.theriogenology.2003.06.002

Wani, N. A., Misra, A. K., & Maurya, S. N. (2004b). Maturation rates of vitrified-thawed immature buffalo (Bubalus bubalis) oocytes: effect of different types of cryoprotectants. Animal Reproduction Science, 84(3-4), 327-335. https://doi.org/10.1016/j.anireprosci.2004.02.007

Xu, H. Y., Geng, S. S., Li, T. T., Fu, Q., Lu, S. S., Liang, X. W., Lu, Y. Q., Zhang, M., Yang, X. G., & Lu, K. H. (2019). Maturation of buffalo oocytes in vitro with acetyl-L-carnitine improves cryotolerance due to changes in mitochondrial function and the membrane lipid profile. Reproduction, Fertility, and Development, 31(2), 386-394. https://doi.org/10.1071/RD18102

Zhu, W., Zheng, J., Wen, Y., Li, Y., Zhou, C., & Wang, Z. (2020). Effect of embryo vitrification on the expression of brain tissue proteins in mouse offspring. Gynecological Endocrinology, 36(11), 973-977. https://doi.org/10.1080/09513590.2020.1734785

Downloads

Published

17/03/2022

How to Cite

KUMAR, S.; CHAVES, M. S. .; SILVA, A. F. B. .; VALE, W. G. .; NEGREIROS, N. A. B. .; ARCCE, I. M. L. .; MELO, L. M. .; FREITAS, V. J. de F. . Factors affecting the cryopreservation of oocytes and embryos in buffalo (Bubalus bubalis): A review. Research, Society and Development, [S. l.], v. 11, n. 4, p. e25111427337, 2022. DOI: 10.33448/rsd-v11i4.27337. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/27337. Acesso em: 25 apr. 2024.

Issue

Section

Review Article