Relation between Hematological and Biochemical Parameters per Days of Symptoms in Hospitalized Patients with flu-like syndrome and COVID-19

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27439

Keywords:

COVID-19; SARS-CoV-2; Clinical laboratory techniques; Biomarkers.

Abstract

Beside the acute respiratory syndrome caused by COVID-19, the exacerbated inflammatory process leads to systemic coagulation disorders, acute cardiovascular disorders, acute renal failure, metabolic changes and other clinical manifestations, increasing the mortality of patients with severe forms of the disease. The development of effective vaccines and drugs for the adequate treatment of severe forms of the disease has become a priority for the scientific and medical community. Likewise, the discovery of possible predictors for the early identification of severe cases with a high risk of death are constantly being sought. Laboratory tests, such as blood count, coagulation tests, hormonal and biochemical tests, are performed on a daily basis in the hospital environment and have proved to be very useful in the search for these indicators. In our study, we evaluated the laboratory tests of 398 positive and negative patients for COVID-19 admitted to hospitals in Uberaba, from the Macroregion of Triângulo Sul, state of Minas Gerais, with a population of 800,000 inhabitants. In our results, it was observed that the patients who died presented anemia, neutrophilic leukocytosis, increased CRP, urea and creatinine from the 5th, 6th day of symptoms, and with lymphopenia on the 1st day. In blood gas analysis, pH, SaO2 and PO2 were reduced since the 1st day of symptoms in patients who died, and the pH remained reduced until the clinical outcome. Changes were also found in the dosage of LDH, aPTT, albumin and electrolytes. Given these results, laboratory tests can be useful as predictive signs of severity in the early days of symptoms.

References

Acar, E., Demir, A., Yıldırım, B., Kaya, M. G., & Gökçek, K. (2021). The role of hemogram parameters and C-reactive protein in predicting mortality in COVID-19 infection. International Journal of Clinical Practice, 75(7), e14256. https://doi.org/10.1111/ijcp.14256

Adil, M. T., Rahman, R., Whitelaw, D., Jain, V., Al-Taan, O., Rashid, F., & Jambulingam, P. (2021). SARS-CoV-2 and the pandemic of COVID-19. Postgrad Med J, 97(1144), 110-116. 10.1136/postgradmedj-2020-138386

Agarwal, E., Ferguson, M., Banks, M., Batterham, M., Bauer, J., Capra, S., & Isenring, E. (2013). Malnutrition and poor food intake are associated with prolonged hospital stay, frequent readmissions, and greater in-hospital mortality: results from the Nutrition Care Day Survey 2010. Clin Nutr, 32(5), 737-745. 10.1016/j.clnu.2012.11.021

Andersen, L. W., Mackenhauer, J., Roberts, J. C., Berg, K. M., Cocchi, M. N., & Donnino, M. W. (2013). Etiology and therapeutic approach to elevated lactate levels. Mayo Clin Proc, 88(10), 1127-1140. 10.1016/j.mayocp.2013.06.012

Bangash, M. N., Patel, J., & Parekh, D. (2020). COVID-19 and the liver: little cause for concern. Lancet Gastroenterol Hepatol, 5(6), 529-530. 10.1016/s2468-1253(20)30084-4

Barr, F. D., Ochsenbauer, C., Wira, C. R., & Rodriguez-Garcia, M. (2018). Neutrophil extracellular traps prevent HIV infection in the female genital tract. Mucosal Immunology, 11(5), 1420-1428. 10.1038/s41385-018-0045-0

Bedock, D., Couffignal, J., Bel Lassen, P., Soares, L., Mathian, A., Fadlallah, J. P., & Faucher, P. (2021). Evolution of Nutritional Status after Early Nutritional Management in COVID-19 Hospitalized Patients. Nutrients, 13(7). 10.3390/nu13072276

Bezuidenhout, M. C., Wiese, O. J., Moodley, D., Maasdorp, E., Davids, M. R., Koegelenberg, C. F., & Allwood, B. W. (2021). Correlating arterial blood gas, acid-base and blood pressure abnormalities with outcomes in COVID-19 intensive care patients. Ann Clin Biochem, 58(2), 95-101. 10.1177/0004563220972539

Boccia, M., Aronne, L., Celia, B., Mazzeo, G., Ceparano, M., D'Agnano, V., & Perrotta, F. (2020). COVID-19 and coagulative axis: review of emerging aspects in a novel disease. Monaldi Arch Chest Dis, 90(2). 10.4081/monaldi.2020.1300

Borges, L., Pithon-Curi, T. C., Curi, R., & Hatanaka, E. (2020). COVID-19 and Neutrophils: The Relationship between Hyperinflammation and Neutrophil Extracellular Traps. Mediators of Inflammation, 2020, 8829674. 10.1155/2020/8829674

Cha, M. H., Regueiro, M., & Sandhu, D. S. (2020). Gastrointestinal and hepatic manifestations of COVID-19: A comprehensive review. World J Gastroenterol, 26(19), 2323-2332. 10.3748/wjg.v26.i19.2323

Chee, Y. J., Tan, S. K., & Yeoh, E. (2020). Dissecting the interaction between COVID-19 and diabetes mellitus. J Diabetes Investig, 11(5), 1104-1114. 10.1111/jdi.13326

Chhetri, S., Khamis, F., Pandak, N., Al Khalili, H., Said, E., & Petersen, E. (2020). A fatal case of COVID-19 due to metabolic acidosis following dysregulate inflammatory response (cytokine storm). IDCases, 21, e00829. 10.1016/j.idcr.2020.e00829

Cole-Jeffrey, C. T., Liu, M., Katovich, M. J., Raizada, M. K., & Shenoy, V. (2015). ACE2 and Microbiota: Emerging Targets for Cardiopulmonary Disease Therapy. J Cardiovasc Pharmacol, 66(6), 540-550. 10.1097/fjc.0000000000000307

Ding, Y., He, L., Zhang, Q., Huang, Z., Che, X., Hou, J., & Jiang, S. (2004). Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. The Journal of Pathology, 203(2), 622-630. https://doi.org/10.1002/path.1560

Fan, Z., Chen, L., Li, J., Cheng, X., Yang, J., Tian, C., & Cheng, J. (2020). Clinical Features of COVID-19-Related Liver Functional Abnormality. Clin Gastroenterol Hepatol, 18(7), 1561-1566. 10.1016/j.cgh.2020.04.002

Fenollar, F., Bouam, A., Ballouche, M., Fuster, L., Prudent, E., Colson, P., & Fournier, P. E. (2021). Evaluation of the Panbio COVID-19 Rapid Antigen Detection Test Device for the Screening of Patients with COVID-19. J Clin Microbiol, 59(2). 10.1128/jcm.02589-20

Folsom, A. R., Lutsey, P. L., Astor, B. C., & Cushman, M. (2009). C-reactive protein and venous thromboembolism. A prospective investigation in the ARIC cohort. Thromb Haemost, 102(4), 615-619. 10.1160/th09-04-0274

Gabarre, P., Dumas, G., Dupont, T., Darmon, M., Azoulay, E., & Zafrani, L. (2020). Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med, 46(7), 1339-1348. 10.1007/s00134-020-06153-9

Gattinoni, L., Chiumello, D., Caironi, P., Busana, M., Romitti, F., Brazzi, L., & Camporota, L. (2020). COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med, 46(6), 1099-1102. 10.1007/s00134-020-06033-2

Gombart, A. F., Pierre, A., & Maggini, S. (2020). A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients, 12(1), 236. https://www.mdpi.com/2072-6643/12/1/236

Gómez-Mesa, J. E., Galindo-Coral, S., Montes, M. C., & Muñoz Martin, A. J. (2021). Thrombosis and Coagulopathy in COVID-19. Curr Probl Cardiol, 46(3), 100742. 10.1016/j.cpcardiol.2020.100742

Grasselli, G., Zangrillo, A., Zanella, A., Antonelli, M., Cabrini, L., Castelli, A., & Pesenti, A. (2020). Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. Jama, 323(16), 1574-1581. 10.1001/jama.2020.5394

Guo, L., Ren, L., Yang, S., Xiao, M., Chang, D., Yang, F., & Wang, J. (2020). Profiling Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19). Clinical Infectious Diseases, 71(15), 778-785. 10.1093/cid/ciaa310

Habib, M. B., Sardar, S., & Sajid, J. (2020). Acute symptomatic hyponatremia in setting of SIADH as an isolated presentation of COVID-19. IDCases, 21, e00859. 10.1016/j.idcr.2020.e00859

Horvath, A., Lind, T., Frece, N., Wurzer, H., & Stadlbauer, V. (2021). Risk stratification in hospitalized COVID-19 patients. J Hepatol, 75(3), 740-742. 10.1016/j.jhep.2021.04.024

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506. 10.1016/S0140-6736(20)30183-5

Hudson, L., Chittams, J., Griffith, C., & Compher, C. (2018). Malnutrition Identified by Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition Is Associated With More 30-Day Readmissions, Greater Hospital Mortality, and Longer Hospital Stays: A Retrospective Analysis of Nutrition Assessment Data in a Major Medical Center. JPEN J Parenter Enteral Nutr, 42(5), 892-897. 10.1002/jpen.1021

IBGE. Instituto Brasileiro de Geografia e Estatística. Cidades. Internet. http://www.cidades.ibge.gov.br 2019.

Izcovich, A., Ragusa, M. A., Tortosa, F., Lavena Marzio, M. A., Agnoletti, C., Bengolea, A., & Rada, G. (2020). Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS One, 15(11), e0241955. 10.1371/journal.pone.0241955

Jayawardena, R., Sooriyaarachchi, P., Chourdakis, M., Jeewandara, C., & Ranasinghe, P. (2020). Enhancing immunity in viral infections, with special emphasis on COVID-19: A review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4), 367-382. https://doi.org/10.1016/j.dsx.2020.04.015

Ji, Y., Ma, Z., Peppelenbosch, M. P., & Pan, Q. (2020). Potential association between COVID-19 mortality and health-care resource availability. Lancet Glob Health, 8(4), e480. 10.1016/s2214-109x(20)30068-1

Jin, Y.-H., Cai, L., Cheng, Z.-S., Cheng, H., Deng, T., Fan, Y.-P., & Health, C. (2020). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Medical Research, 7(1), 4. 10.1186/s40779-020-0233-6

Jin, Y., Yang, H., Ji, W., Wu, W., Chen, S., Zhang, W., & Duan, G. (2020). Virology, Epidemiology, Pathogenesis, and Control of COVID-19. Viruses, 12(4), 372. Retrieved from https://www.mdpi.com/1999-4915/12/4/372

Kadel, S., & Kovats, S. (2018). Sex Hormones Regulate Innate Immune Cells and Promote Sex Differences in Respiratory Virus Infection. Frontiers in Immunology, 9. 10.3389/fimmu.2018.01653

Kraut, J. A., & Madias, N. E. (2014). Lactic acidosis. N Engl J Med, 371(24), 2309-2319. 10.1056/NEJMra1309483

Lamichhane, P. P., & Samarasinghe, A. E. (2019). The Role of Innate Leukocytes during Influenza Virus Infection. Journal of Immunology Research, 2019, 8028725. 10.1155/2019/8028725

Levi, M., Thachil, J., Iba, T., & Levy, J. H. (2020). Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol, 7(6), e438-e440. 10.1016/s2352-3026(20)30145-9

Li, X., Wang, L., Yan, S., Yang, F., Xiang, L., Zhu, J., & Gong, Z. (2020). Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China. Int J Infect Dis, 94, 128-132. 10.1016/j.ijid.2020.03.053

Lillicrap, D. (2020). Disseminated intravascular coagulation in patients with 2019-nCoV pneumonia. J Thromb Haemost, 18(4), 786-787. 10.1111/jth.14781

Lippi, G., South, A. M., & Henry, B. M. (2020). Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann Clin Biochem, 57(3), 262-265. 10.1177/0004563220922255

Liu, X., Zhang, R., & He, G. (2020). Hematological findings in coronavirus disease 2019: indications of progression of disease. Annals of Hematology, 99(7), 1421-1428. 10.1007/s00277-020-04103-5

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., & Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8

Luo, X., Zhou, W., Yan, X., Guo, T., Wang, B., Xia, H., & Yang, W. (2020). Prognostic Value of C-Reactive Protein in Patients With Coronavirus 2019. Clin Infect Dis, 71(16), 2174-2179. 10.1093/cid/ciaa641

Ma, L. N., Huang, X. B., Muyayalo, K. P., Mor, G., & Liao, A. H. (2020). Lactic Acid: A Novel Signaling Molecule in Early Pregnancy? Front Immunol, 11, 279. 10.3389/fimmu.2020.00279

Morley, J. J., & Kushner, I. (1982). Serum C-reactive protein levels in disease. Ann N Y Acad Sci, 389, 406-418. 10.1111/j.1749-6632.1982.tb22153.x

Moser, J.-A. S., Galindo-Fraga, A., Ortiz-Hernández, A. A., Gu, W., Hunsberger, S., Galán-Herrera, J.-F., & Group, T. L. R. I. S. (2019). Underweight, overweight, and obesity as independent risk factors for hospitalization in adults and children from influenza and other respiratory viruses. Influenza and Other Respiratory Viruses, 13(1), 3-9. https://doi.org/10.1111/irv.12618

Murashima, M., Nishimoto, M., Kokubu, M., Hamano, T., Matsui, M., Eriguchi, M., & Tsuruya, K. (2019). Inflammation as a predictor of acute kidney injury and mediator of higher mortality after acute kidney injury in non-cardiac surgery. Scientific Reports, 9(1), 20260. 10.1038/s41598-019-56615-4

Murugan, R., & Kellum, J. A. (2011). Acute kidney injury: what's the prognosis? Nat Rev Nephrol, 7(4), 209-217. 10.1038/nrneph.2011.13

Nechipurenko, Y. D., Semyonov, D. A., Lavrinenko, I. A., Lagutkin, D. A., Generalov, E. A., Zaitceva, A. Y., & Yegorov, Y. E. (2021). The Role of Acidosis in the Pathogenesis of Severe Forms of COVID-19. Biology (Basel), 10(9). 10.3390/biology10090852

Newington, J. T., Harris, R. A., & Cumming, R. C. (2013). Reevaluating Metabolism in Alzheimer's Disease from the Perspective of the Astrocyte-Neuron Lactate Shuttle Model. J Neurodegener Dis, 2013, 234572. 10.1155/2013/234572

Nikpouraghdam, M., Jalali Farahani, A., Alishiri, G., Heydari, S., Ebrahimnia, M., Samadinia, H., & Bagheri, M. (2020). Epidemiological characteristics of coronavirus disease 2019 (COVID-19) patients in IRAN: A single center study. J Clin Virol, 127, 104378. 10.1016/j.jcv.2020.104378

Panesar, N. S. (2008). What caused lymphopenia in SARS and how reliable is the lymphokine status in glucocorticoid-treated patients? Med Hypotheses, 71(2), 298-301. 10.1016/j.mehy.2008.03.019

Petrilli, C. M., Jones, S. A., Yang, J., Rajagopalan, H., O’Donnell, L., Chernyak, Y., & Horwitz, L. I. (2020). Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ, 369, m1966. 10.1136/bmj.m1966

Pironi, L., Sasdelli, A. S., Ravaioli, F., Baracco, B., Battaiola, C., Bocedi, G., & Musio, A. (2021). Malnutrition and nutritional therapy in patients with SARS-CoV-2 disease. Clin Nutr, 40(3), 1330-1337. 10.1016/j.clnu.2020.08.021

Rai, P., Kumar, B. K., Deekshit, V. K., Karunasagar, I., & Karunasagar, I. (2021). Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl Microbiol Biotechnol, 105(2), 441-455. 10.1007/s00253-020-11061-5

Rodriguez-Morales, A. J., Cardona-Ospina, J. A., Gutiérrez-Ocampo, E., Villamizar-Peña, R., Holguin-Rivera, Y., Escalera-Antezana, J. P., & Sah, R. (2020). Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis, 34, 101623. 10.1016/j.tmaid.2020.101623

Rosales, C. (2020). Neutrophils at the crossroads of innate and adaptive immunity. Journal of Leukocyte Biology, 108(1), 377-396. https://doi.org/10.1002/JLB.4MIR0220-574RR

Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med, 46(5), 846-848. 10.1007/s00134-020-05991-x

Shenoy, V. V., & Kalagudi, G. M. (2005). Enhancing plant phosphorus use efficiency for sustainable cropping. Biotechnol Adv, 23(7-8), 501-513. 10.1016/j.biotechadv.2005.01.004

Shevel, E. (2020). Conditions Favoring Increased COVID-19 Morbidity and Mortality: Their Common Denominator and Treatment. Isr Med Assoc J, 11(22), 680.

Short, K. R., Kedzierska, K., & van de Sandt, C. E. (2018). Back to the Future: Lessons Learned From the 1918 Influenza Pandemic. Frontiers in Cellular and Infection Microbiology, 8. 10.3389/fcimb.2018.00343

Sreepadmanabh, M., Sahu, A. K., & Chande, A. (2020). COVID-19: Advances in diagnostic tools, treatment strategies, and vaccine development. J Biosci, 45(1). 10.1007/s12038-020-00114-6

Su, H., Gao, D., Yang, H.-C., Fogo, A. B., Nie, X., & Zhang, C. (2020). The authors reply. Kidney International, 98(1), 232-233. 10.1016/j.kint.2020.05.007

Tan, Y.-J., Fielding, B. C., Goh, P.-Y., Shen, S., Tan, T. H. P., Lim, S. G., & Hong, W. (2004). Overexpression of 7a, a Protein Specifically Encoded by the Severe Acute Respiratory Syndrome Coronavirus, Induces Apoptosis via a Caspase-Dependent Pathway. Journal of Virology, 78(24), 14043-14047. 10.1128/JVI.78.24.14043-14047.2004

Tang, N., Li, D., Wang, X., & Sun, Z. (2020). Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost, 18(4), 844-847. 10.1111/jth.14768

Tao, R.-J., Luo, X.-L., Xu, W., Mao, B., Dai, R.-X., Li, C.-W., & Xu, J.-F. (2018). Viral infection in community acquired pneumonia patients with fever: a prospective observational study. Journal of Thoracic Disease, 10(7), 4387-4395. Retrieved from https://jtd.amegroups.com/article/view/21893

Ten-Caten, F., Gonzalez-Dias, P., Castro, Í., Ogava, R. L. T., Giddaluru, J., Silva, J. C. S., & Nakaya, H. I. (2021). In-depth analysis of laboratory parameters reveals the interplay between sex, age, and systemic inflammation in individuals with COVID-19. International Journal of Infectious Diseases, 105, 579-587. https://doi.org/10.1016/j.ijid.2021.03.016

Tillett, W. S., & Francis, T. (1930). Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J Exp Med, 52(4), 561-571. 10.1084/jem.52.4.561

Tirotta, C. F., Alcos, S., Lagueruela, R. G., Salyakina, D., Wang, W., Hughes, J., & Burke, R. P. (2020). Three-year experience with immediate extubation in pediatric patients after congenital cardiac surgery. Journal of Cardiothoracic Surgery, 15(1), 1. 10.1186/s13019-020-1051-3

Vasileva, D., & Badawi, A. (2019). C-reactive protein as a biomarker of severe H1N1 influenza. Inflammation Research, 68(1), 39-46. 10.1007/s00011-018-1188-x

Vivas, D., Roldán, V., Esteve-Pastor, M. A., Roldán, I., Tello-Montoliu, A., Ruiz-Nodar, J. M., & Marín, F. (2020). [Recommendations on antithrombotic treatment during the COVID-19 pandemic. Position statement of the Working Group on Cardiovascular Thrombosis of the Spanish Society of Cardiology]. Rev Esp Cardiol, 73(9), 749-757. 10.1016/j.recesp.2020.04.006

Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., & Peng, Z. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. Jama, 323(11), 1061-1069. 10.1001/jama.2020.1585

Wang, L., Li, X., Chen, H., Yan, S., Li, D., Li, Y., & Gong, Z. (2020). Coronavirus Disease 19 Infection Does Not Result in Acute Kidney Injury: An Analysis of 116 Hospitalized Patients from Wuhan, China. American Journal of Nephrology, 51(5), 343-348. 10.1159/000507471

Wang, R., He, M., & Kang, Y. (2021). Hypophosphatemia at Admission is Associated with Increased Mortality in COVID-19 Patients. Int J Gen Med, 14, 5313-5322. 10.2147/ijgm.S319717

Williams, V., Jayashree, M., Nallasamy, K., Dayal, D., & Rawat, A. (2020). 0.9% saline versus Plasma-Lyte as initial fluid in children with diabetic ketoacidosis (SPinK trial): a double-blind randomized controlled trial. Crit Care, 24(1), 1. 10.1186/s13054-019-2683-3

Wool, G. D., & Miller, J. L. (2021). The Impact of COVID-19 Disease on Platelets and Coagulation. Pathobiology, 88(1), 15-27. 10.1159/000512007

Wu, C., Hu, X., Song, J., Du, C., Xu, J., Yang, D., & group, s. (2020). Heart injury signs are associated with higher and earlier mortality in coronavirus disease 2019 (COVID-19). medRxiv, 2020.2002.2026.20028589. 10.1101/2020.02.26.20028589

Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., & Wang, F. S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 8(4), 420-422. 10.1016/s2213-2600(20)30076-x

Yuan, X., Huang, W., Ye, B., Chen, C., Huang, R., Wu, F., &Hu, J. (2020). Changes of hematological and immunological parameters in COVID-19 patients. Int J Hematol, 112(4), 553-559. 10.1007/s12185-020-02930-w

Zhang, C., Shi, L., & Wang, F. S. (2020). Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol, 5(5), 428-430. 10.1016/s2468-1253(20)30057-1

Zheng, Y., Xu, H., Yang, M., Zeng, Y., Chen, H., Liu, R., & Wang, D. (2020). Epidemiological characteristics and clinical features of 32 critical and 67 noncritical cases of COVID-19 in Chengdu. J Clin Virol, 127, 104366. 10.1016/j.jcv.2020.104366

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395(10229), 1054-1062. 10.1016/S0140-6736(20)30566-3

Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 395(10229), 1054-1062. 10.1016/s0140-6736(20)30566-3

Downloads

Published

26/03/2022

How to Cite

SILVA, D. A. A. da .; ANDRADE-SILVA, L. E. de; DESIDÉRIO, C. S. .; FARNESI DE ASSUNÇÃO, T. S. .; OLIVEIRA, A. C. de M. .; TREVISAN, R. O. .; SANTOS, M. M. .; HELMO, F. R. .; BARBOSA, L. M. .; COSTA-MADEIRA, J. C. .; BARBOSA, R. M. .; BORGES, A. V. B. e .; CUNHA, A. C. C. H. .; PEREIRA, L. Q. .; BOVI, W. G. .; BUENO, G. F. .; MUNDIM, F. V. .; MONTEIRO, I. B. .; FERREIRA, Y. M. .; MACHADO, G. H. .; PAIM, K. F. .; MORAES-SOUZA, H. .; OLIVEIRA, C. J. F. .; SILVA, M. V. da .; RODRIGUES, V. . Relation between Hematological and Biochemical Parameters per Days of Symptoms in Hospitalized Patients with flu-like syndrome and COVID-19. Research, Society and Development, [S. l.], v. 11, n. 4, p. e54411427439, 2022. DOI: 10.33448/rsd-v11i4.27439. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/27439. Acesso em: 25 apr. 2024.

Issue

Section

Health Sciences