Selective stepwise caries removal in primary teeth: a microbiological assessment on surviving microbiota

Authors

DOI:

https://doi.org/10.33448/rsd-v11i4.27478

Keywords:

Dental Caries Activity Tests; Dental Caries; Microbiota; Microbiology.

Abstract

Partial caries removal performed by the stepwise treatment has a high rate of clinical success and promotes a reduction of microorganisms in carious dentin. However, the adaptive behavior of these cloistered bacteria is not entirely clear. Aim: This study aimed to evaluate the carious dentin and quantify the microorganisms Streptococcus mutans and Lactobacillus acidophilus at the first intervention and after 90 days, assessing the acidogenicity and aciduricity of these bacteria isolated from the lesions. Methods: Twenty patients presenting deep caries lesion in primary molars eligible to receive the stepwise treatment were selected, dentin samples were collected in two different moments: in the first intervention, just after partial caries removal; and in the second intervention, during the reopening of the cavity (90 days after the temporary sealing of the lesion). The samples were processed for microbiological analyses via culture, identification and quantification. The bacteria isolates were subjected to phenotypic tests of acidogenicity and aciduricity. Dentin consistency and color was also recorded by a calibrated examiner. Data were statistically analyzed. Results: There was a reduction in the number of viable microorganisms while dentin rehardening and browning was noted (p<.05), but no change occurred in the acidogenicity and aciduricity properties of Streptococcus mutans and Lactobacillus acidophilus over time. Conclusion: Thus, the stepwise treatment promoted clinical changes as darkening and hardening of carious dentine and promoted a reduction in the number of viable microorganisms, but no influence was found on the phenotypic characteristics of acidogenicity and aciduricity of the species analyzed after 90 days.

References

Schwendicke, F., Stolpe, M., Meyer-Lueckel, H., Paris, S., & Dorfer, C. (2013). Cost-effectiveness of one-and two-step incomplete and complete excavations. J Dent Res. 2013; 92:880–887. doi: 10. 1177/0022034513500792.

Casagrande, L., Seminario, A. T., Correa, M. B., Werle, S. B., Maltz, M., Demarco, F. F., et al. . (2017). Longevity and associated risk fac- tors in adhesive restorations of young permanent teeth after complete and selective caries removal: a retrospective study. Clin Oral Investig. 2017; 21:847–855. doi: 10.1007/s00784-016-1832-1

Pratiwi, A. R., Meidyawati, R., & Djauharie, N. . (2017). The effect of MTA application on the affected dentine remineralization after partial caries excavation (in vivo). Journal of Physics: Conf Series. 2017; 884012119. doi: 10.1088/1742-6596/884/1/012119

Bjørndal, L., Larsen, T., & Thylstrup, A. . (1997). A clinical and micro- biological study of deep carious lesions during stepwise excavation using long treatment intervals. Caries Res. 1997; 31:411–417. doi: 10.1159/000262431

Schwendicke, F., Walsh, T., Fontana, M., Bjørndal, L., Clarkson, J.E., Lamont, T., et al. . (2018). Interventions for treating cavitated or dentine carious lesions. Cochrane Database Syst Rev. 2018; 6: CD013039. doi: 10.1002/14651858.CD013039

Schwendicke, F., Dörfer, C. E., & Paris, S. . (2013). Incomplete caries removal: a systematic review and meta-analysis. J Dent Res. 2013; 92(4): 306-14. doi: 10.1177/0022034513477425

Maltz, M., Alves, L. S., Jardim, J. J., Moura, M. S., & Oliveira, E. F. . (2011). Incomplete caries removal in deep lesions: a 10-year prospective study. Am J Dent. 2011; 24(4): 211-4.

Elhennawy, K., Finke, C., Paris, S., Reda, S., Jost-Brinkmann, P., & Schwendicke, F. . (2018). Selective vs stepwise removal of deep carious lesions in primary molars: 12-Months results of a randomized controlled pilot trial. J Dent. 2018 Oct;77:72-77. doi: 10.1016/j.jdent.2018.07.011

Bitello-Firmino, L., Soares, V. K., Damé-Teixeira, N., Parolo, C. C .F., & Maltz, M. . (2018). Microbial load after selective and complete caries removal in permanent molars: a randomized clinical trial. Braz Dent J. 2018; 29:290–295. doi: 10.1590/0103-6440201801816

Maltz, M., Henz, S. L., Oliveira, E. F., & Jardim, J .J. . (2012). Conventional caries removal and sealed caries in permanent teeth: a microbiological evaluation. J Dent. 2012; 40(9):776-82. doi: 10.1016/j.jdent.2012.05.011

Barros, M. M. A .F., Rodrigues, M. I. Q., Muniz, F. W. M. G., & Rodrigues, L. K. A. . (2020). Selective, stepwise, or nonselective removal of carious tissue: which technique offers lower risk for the treatment of dental caries in permanent teeth? A systematic review and meta-analysis. Clin Oral Investig. 2020; 24(2):521-532. doi: 10.1007/s00784-019-03114-5

Innes, N. P., Frencken, J. E., Bjorndal, L., Maltz, M., Manton, D. J., Ricketts, D., et al. . (2016). Managing carious lesions: consensus recommendations on terminology. Adv Dent Res. 2016; 28:49–57. doi: 10.1177/0022034516639276

Lula, E. C. O., Almeida Jr, L .J. S., Alves, C. M. C., Monteiro-Neto, V., & Ribeiro, C. C .C. . (2011). Partial caries removal in primary teeth: association of clinical parameters with microbiological status. Caries Res. 2011;45(3):275-80. doi: 10.1159/000325854

Duque, C., Negrini, T. C., Sacono, N. T., Spolidorio, D. M. P., Costa, C. A. S., & Hebling, J. . (2009). Clinical and microbiological performance of resin-modified glass-ionomer liners after incomplete dentine caries removal. Clin Oral Investig. 2009;13(4):465-71. doi: 10.1007/s00784-009-0304-2

Lula, E. C .O., Monteiro-Neto, V., Alves, C. M. C., & Ribeiro, C .C. C. . (2009). Microbiological analysis after complete or partial removal of carious dentin in primary teeth: a randomized clinical trial. Caries Res. 2009;43(5):354-8. doi: 10.1159/000231572

Ganas, P., & Schwendicke, F. . (2019). Effect of reduced nutritional supply on the metabolic activity and survival of cariogenic bacteria in vitro. J Oral Microbiol. 2019;11(1):1605788. doi: 10.1080/20002297.2019.1605788

Knutsson, G., Jontell, M., & Bergenholtz, G. . (1994). Determination of plasma proteins in dentinal fluid from cavities prepared in healthy young human teeth. Arch. Oral Biol. 1994; 39:185–190. doi: 10.1016/0003-9969(94)90043-4

Tüzüner, T., Dimkov, A., & Nicholson, J. W. . (2019). The effect of antimicrobial additives on the properties of dental glass-ionomer cements: a review. Acta Biomater Odontol Scand. 2019;5(1):9-21. doi: 10.1080/23337931.2018.1539623

Paddick, J. S., Brailsford, S. R., & Kidd, E. A. M., . (2005). Beighton, D. Phenotypic and genotypic selection of microbiota surviving under dental restorations. Appl Environ Microbiol. 2005;71(5):2467-72. doi: 10.1128/AEM.71.5.2467-2472.2005

He, Y., Yin, J., Lei, J., Liu, F., Zheng, H., et al. . (2019). Fasting challenges human gut microbiome resilience and reduces Fusobacterium. Medicine in Microecology. 2019; 2 (1). doi: 10.1016/j.medmic.2019.100003

Massara, M. L. A., Alves, J. B., & Brandão, P. R .G. . (2002). Atraumatic restorative treatment: clinical, ultrastructural and chemical analysis. Caries Res. 2002; 36(6); 430-6. doi: 10.1159/000066534.

Maltz, M., Oliveira, E. F., Fontanella, V., & Bianchi, R. . (2002). A clinical, microbiologic, and radiographic study of deep caries lesions after incomplete caries removal. Quintessence Int. 2002; 33(2): 151-9.

Lembo, F .L., Longo, P .L., Ota-Tsuzuki, C., Rodrigues, C. R., & Mayer, M. P. . (2007). Genotypic and phenotypic analysis of Streptococcus mutans from different oral cavity sites of caries-free and caries-active children. Oral Microbiol Immunol. 2007; 22(5): 313-9. doi: 10.1111/j.1399-302X.2007.00361.x.

Arthur, R. A., Cury, A. A., Graner, R. O., Rosalen, P. L., Vale, G.C., Paes Leme, A. F., et al. . (2011). Genotypic and phenotypic analysis of S. mutans isolated from dental biofilms formed in vivo under high cariogenic conditions. Braz Dent J. 2011; 22(4): 267-74. doi: 10.1590/s0103-64402011000400001.

Ricketts, D., Lamont, T., Innes, N.P., Kidd, E., & Clarkson, J. E. . (2013). Operative caries management in adults and children. Cochrane Database Syst Rev 3. 2013 doi: 10.1002/14651858. CD003808.pub3

Kaukua, N., Chen, M., Guarnieri, P., Dahl, M., Lim, M. L., Yucel-Lindberg, T.,et al. . (2015). Molecular differences between stromal cell populations from deciduous and permanent human teeth. Stem Cell Res Ther. 2015; 6:59. doi: 10.1186/s13287-015-0056-7

Kleter, G. A. . (1998). Discoloration of dental carious lesion – a review. Arch Oral Biol. 1998; 43: 629-32. doi: 10.1016/s0003-9969(98)00048-x.

Orhan, A. I., Oz, F. T., Ozcelik, B., & Orhan, K. . (2008). A clinical and mi- crobiological comparative study of deep carious lesion treatment in deciduous and young permanent molars. Clin Oral Investig. 2008; 12: 369–378. doi: 10.1007/s00784-008-0208-6

Wambier, D. S., dos Santos, F. A., Guedes-Pinto, A. C., Jaeger, R. G., & Simionato, M. R. . (20070). Ultrastructural and microbiological analysis of the dentin layers affected by caries lesions in primary molars treated by minimal intervention. Pediatr Dent. 2007; 29(3): 228-34.

Bana, J. A., Takanami, E., Hemsley, R.M., Villhauer, A., Zhu, M., Qian, F., et al. (2020). Evaluating the relationship between acidogenicity and acid tolerance for oral streptococci from children with or without a history of caries. J Oral Microbiol. 2020; 12(1). doi: 10.1080/20002297.2019.1688449

Downloads

Published

18/03/2022

How to Cite

CORREIA, M. F. .; CARVALHO, G. G. de .; SPOLIDORIO, L. C. .; SPOLIDORIO, D. M. P. . Selective stepwise caries removal in primary teeth: a microbiological assessment on surviving microbiota . Research, Society and Development, [S. l.], v. 11, n. 4, p. e27211427478, 2022. DOI: 10.33448/rsd-v11i4.27478. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/27478. Acesso em: 25 apr. 2024.

Issue

Section

Health Sciences