Histological aspects of rat ovaries supplemented with bee pollen from Cocos nucifera

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.28149

Keywords:

Bee pollen; Functional food; Ovary histology.

Abstract

Bee pollen is a food supplement for its medicinal properties. It has a high concentration of vitamins, mineral salts, proteins, phenolic compounds and carbohydrates, which are beneficial to health. The objective of this work was to evaluate the effects of bee pollen supplementation on the ovarian performance of rats. Fifty pubescent rats were separated into groups maintained with a common feeding routine. Two experimental groups of 15 animals each were supplemented by intragastric administration with 50 mg of bee pollen from Cocos nucifera, for 30 and 90 days. The estrous cycle was followed in the last 12 days of treatment. In the first estrus after treatment, euthanasia was performed by intraperitoneal administration of sodium thiopental (50 mg/kg), to remove the ovaries for making histological sections. The number and types of ovarian structures present were analyzed: secondary follicle, Graafian follicle, atresic follicle and corpus luteum. In animals supplemented for 30 days there was a significant increase in the number of atresic follicles compared to controls. This increase also occurred in the supplemented 90 days compared to 30 days. It was also found a decrease in the number of corpora lutea, suggesting that the effects are time dependent.

References

AbdEl-Gawad, E. I. (2010). Potential impact of bee pollen administration during pregnancy in rats. Journal of American Science, (5), 44-53.

Akiyasu, T., Paudyal, B., Paudyal, P., Kumiko, M., Kazue, U., Takuji. et al. (2010) A case report of acute renal failure associated with bee pollen contained in nutritional supplements. Ther Apher Dial, 14(1), 93-97.

Alves, R. F., & Santos, F. A. R. (2014). Plant sources for bee pollen load production in Sergipe, northeast Brazil. Palynology, 38(1), 90-100.

Archini, L. C., Reis, V. D. A, & Moreti, A. C. C. C. (2006). Composição físico-química de amostras de pólen coletado por abelhas Africanizadas Apis mellifera (Hymenoptera: Apidae) em Piracicaba, Estado de São Paulo. Ciência Rural, 36(9), 949-953.

Asadi, F., Fazelipour, S., Abbasi, R. H., Jahangirirad, M., Tootian, Z., Nedaei, K. et al. (2017). Assessment of ovarian follicles and serum reproductive hormones in molybdenum trioxide nanoparticles treated rats. Int J Morphol, 35(4), 1473-1481.

Attia, Y.A., Al-Hanoun, A., & Bovera, F. (2011). Effect of different levels of bee pollen on performance and blood profile of New Zealand white bucks and growth performance of their offspring during summer and winter months. J Anim Physiol Anim Nutr, 95(1), 17-26.

Bárbara, M., Machado, C., Sodré G., Dias L., Estevinho L., & Carvalho C. A. (2015). Microbiological assessment, nutritional characterization and phenolic compounds of bee pollen from Mellipona mandaçaia Smith, 1983. Molecules, 20(12),12525-12544.

Brasil. (2001a). Ministério de Agricultura e do Abastecimento. Instrução Normativa No. 3, de 19 de janeiro de 2001. Regulamento Técnico de Identidade e Qualidade do Pólen Apícola. Diário Oficial da União. 23 de janeiro de 2001, Seção 16-I, p.18-23.

Brasil. (2001b). IN Nº 03, de 19 de janeiro de 2001. Aprova os Regulamentos Técnicos de Identidade e Qualidade de Apitoxina, Cera de Abelha, Geléia Real, Geléia Real Liofilizada, Pólen Apícola, Própolis e Extrato de Própolis. Diário Oficial da União. 23 de janeiro de 2001.

Caldas, F. R. L., Augusto Filho, F., Facundo, H.T., Alves, R. F., Santos, F. A. R., Silva, G. R. et al. (2018). Composição química, atividade antiradicalar e antimicrobiana do pólen apícola de Fabaceae. Quim Nova, 42(1), 49-56.

Campos, M. G. R., Bogdanov, S., Almeida-Muradian, L. B., Szczesna, T., Mancebo, Y., Frigerio, C, et al. (2008). Pollen composition and standardization of analytical methods. J Apic Res Bee World. 47(2),154-161.

Denisow, B., & Denisow-Pietrzyk, M. (2016). Biological and therapeutic properties of bee pollen: a review. J Sci Food Agric, 96(13), 4303-4309.

Dübecke, A., Beckh, G., & Lüllmann, C. (2011). Pyrrolizidine alkaloids in honey and bee pollen. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 28(3), 348-358.

Ebbert, W. & Bostedt, H. (1993). Cystic degeneration in porcine ovaries – first communication: Morphology of cystic ovaries, interpretation of the results. Reprod Dom Anim, 28(6), 441-45.

Erdtman, G. (1960). The acetolysis method: in a revised description. Svensk Bot Tidskr, 54(4), 561-564.

Goldman, J. M., Murr, A. S., & Cooper, R. L. (2007). The rodent estrous cycle: characterization of vaginal cytology and its utility in toxicological studies. Birth Defects Res B Dev Reprod Toxicol, 80(2), 84-97.

Inacio, L. J., Merlanti, R., Lucatello, L., Bisutti, V., Contiero, B., & Serva, L. (2020). Pyrrolizidine alkaloids in bee pollen identified by LC-MS/MS analysis and colour parameters using multivariate class modeling. Heliyon. e03593.

Ishikawa, Y., Tokura, T., Ushio, H., Niyonsaba, F., Yamamoto, Y., Tadokoro, T. et al. (2009). Lipid-soluble components of honeybee-collected pollen exert antiallergic effect by inhibiting IgE-mediated mast cell activation in vivo. Phytother Res, 23(11), 1581-1586.

Jucá, M. M., Cysne Filho, F. M. S., Almeida, J. C., Mesquita, D. S., Barriga, J. R. M., Dias, K.C. F. et al. (2020). Flavonoids: biological activities and therapeutic potential. Nat Prod Res, 34, 694-705.

Kafadar, I. H., Güney, A., Türk, C. Y., Öner, M., & Silici, S. (2012). Royal jelly and bee pollen decrease bone loss due to osteoporosis in an oophorectomized rat model. Ek Hast Cerrahisi, 23(2), 100-105.

Kafantaris, I., Amoutzias, G. D., & Mossialos, D. (2020). Foodomics in bee product research: a systematic literature review. Eur Food Res Technol, 247, 309-331.

Kast, C., Kilchenmann, V., Reinhard, H., Bieri, K., & Zoller, O. (2019). Pyrrolizidine alkaloids: the botanical origin of pollen collected during the flowering period of Echium vulgare and the stability of pyrrolizidine alkaloids in bee bread. Molecules, 24, 2214.

Kieliszek, M., Piwowarek, K., Kot, A. M., Błażejak, S., Chlebowska-Śmigiel, A., & Wolska, I. (2018). Pollen and bee-bread as new health-oriented products: A review. Trend Food Sci Technol, 71, 170-180.

Kocot, J., Kiełczykowska, M., Luchowska-Kocot, D., Kurzepa, J., & Musik, I. (2018). Antioxidant potential of propolis, bee pollen, and royal jelly: possible medical application. Oxid Med Cell Long, 1-29.

Kolesarova, A., Bakova, Z., Capcarova, M., Galik, B., Juracek, M., Simko, M. et al. (2013). Consumption of bee pollen affects rat ovarian functions. Journal of Animal Physiology and Animal Nutrition, 97(9), 1059-1065.

Komosinska-Vassev, K., Olczyk, P., Kaźmierczak, J., Mencner, L., & Olczyk, K. (2015). Bee pollen: chemical composition and therapeutic application. Evidence-Based Complementary and Alternative Medicine. Article ID 297425.

Kononenko, N., Minukhin, A., & Chikitkina, V. (2020). Study of the effect of the xenobiotic hormone on the reproductive function of rats. Sci Rise-Med Sci, 5(38), 57-62.

Krížová L, Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019). Isoflavones. Molecules. 24:1076. https://doi.org/10.3390/molecules24061076

.royer, G., & Hegedus, N. (2001). Evaluation of bioactive properties of pollen extracts as functional dietary food supplement. Innov Food Sci Emerg Technol, 2(3), 171-174.

Li, Q-Q., Wang, K., Marcucci, M. C., Sawaya, A. C. H. F., Hu, L., Xue, X-F. et al. (2018). Nutrient-rich bee pollen: A treasure trove of active natural metabolites. J Func Foods, 49, 472-484.

Louveaux, J., Maurizio, A., & Vorwohl, G. (1978). Methods of melissopalynology. Bee World, 59(2), 139-157.

Ma, Y., Sun, L., Li, S., Ni, X., Cao, Z., Chen, M. et al. (2020). Modulation of steroid metabolism and xenobiotic biotransformation responses in zebrafish (Danio rerio) exposed to triadimefon. Environm Poll, 262, 114145.

Marcondes, F. K., Bianchi, F. J., & Tanno, A. P. (2002). Determination of the estrous cycle phases of rats: some helpful

considerations. Braz. J. Biol., 62, 609-614.

Mašková, Z., Kňazovická, V., Tančinová, D., & Panáková, S. (2019). Production of pollen cans by fermentation of bee pollen in model conditions with regard to filamentous micromycetes occurrence. J Microbiol Biotech Food Sci, 8(5), 1223-1227.

Melo. I. L. P., Freitas, A. S., Barth, O. M., Almeida-Muradian, L. B. (2009). Relação entre a composição nutricional e a origem floral de pólen apícola desidratado. Rev Inst Adolfo Lutz, 68(3):346-353.

Naseri, L., Khazaei, M. R., & Khazaei, M. (2021). Potential therapeutic effect of bee pollen and metformin combination on testosterone and estradiol levels, apoptotic markers and total antioxidant capacity in a rat model of polycystic ovary syndrome. Inter J Fert Ster, 15(2),101-107.

Pedersen, T., & Peters, H. (1968). Proposal for a classification of oocytes and follicles in the mouse ovary. J. Reprod. Fertil, 17(3), 555-557.

Pinto, B., Caciagli, F., Riccio, E., Reali, D., Sarić, A., Balog, T. et al. (2010). Antiestrogenic and antigenotoxic activity of bee pollen from Cystus incanus and Salix alba as evaluated by the yeast estrogen screen and the micronucleus assay in human lymphocytes. Eur J Med Chem, 45(9), 4122-4128.

Sarić, A., Balog, T., Sobocanec, S., Kusic, B., Sverko, V., & Rusak, G. (2009). Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen. Food Chem Toxicol, 47,547-554.

Silva, T. M. S., Câmara, C. A., Lins, A. C. S., Barbosa, J. M., Silva, E. M. S., Freitas, B M. et al. (2006). Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. J. Food Composit Anal, 19, 507-511.

Silva, T. M. S., Câmara, C. A., Lins, A. C. S., Agra, M. F., Silva, E. M. S., & Reis, I. T. (2009). Chemical composition, botanical evaluation and screening of radical scavenging activity of collected pollen by the stingless bees. An Acad Bras Ciênc, 81(2), 173-178.

Sirotkin, A. V., Tarko, A., Alexa, R., Fakova, A., Alwasel, S., & Harrath, A. H. (2020). Bee pollens originating from different species have unique effects on ovarian cell functions. Pharm Biol, 58(1), 1092-1097.

Stegelmeier, B. L., Edgar, J. A., Colegate, S. M., Gardner, D. R., Schoch, T. K., Coulombe, R. A. et al. (1999). Pyrrolizidine alkaloid plants, metabolism and toxicity. J Nat Toxins, 8(1), 95-116.

Strauss, J. F., & Williams, C. J. (2019). Yen and Jaffe's Reproductive Endocrinology. Amsterdam (Netherlands): Elsevier Academic. Chapter 8, Ovarian life cycle, 167-205.

Thakur, M. & Nanda, V. (2020). Composition and functionality of bee pollen: a review. Trend Food Sci Technol, 98:82-106.

Tuoheti, T., Rasheed, H. A., Meng, L., & Dong, M. S. (2020). High hydrostatic pressure enhances the anti-proliferative properties of lotus bee pollen on the human prostate cancer PC-3 cells via increased metabolites. J Ethnopharmacol, 261, 113057.

Urcan, A., Mărghitaș, L. A., Dezmirean, D. S., Bobiș, O., Bonta, V., Mureșan, C. J. et al. (2017). Chemical composition and biological activities of beebread-review. Bull UASVM Anim Sci Biotechnol, 74(1), 6-14.

Vergeron, P. (1964). Interprétation statistique des résultats en matière d’analyse pollinique des miels. Ann l’Abeille, 7(4), 349-364,

Yamagushi, M. (2006). Regulatory mechanism of food factors in bone metabolism and prevention of osteoporosis. The Pharm Soc Japan, 126 (11), 1117-1137.

Downloads

Published

04/04/2022

How to Cite

CARVALHO, C. de .; SANTOS, F. R. dos .; RUVI CARELLI MARRETO, L. M.; MARCUCCI, M. C. Histological aspects of rat ovaries supplemented with bee pollen from Cocos nucifera. Research, Society and Development, [S. l.], v. 11, n. 5, p. e22211528149, 2022. DOI: 10.33448/rsd-v11i5.28149. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/28149. Acesso em: 23 apr. 2024.

Issue

Section

Health Sciences