Phytoplankton, with emphasis on potentially toxic cyanobacteria, from Amor Island, Alter do Chão (Santarém, Pará, Brazil)

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.28227

Keywords:

Aphanizomenon; Cylindrospermopsis/Raphidiopsis; Balneability; Nostocales; Environmental Teaching.

Abstract

Amor Island (Alter do Chão, Santarém, Pará, Brazil) is considered a region of great natural beauty and a national and international tourist attraction. The aim of this study was to determine the composition and density of the phytoplankton of the Amor Island, with emphasis on heterocytous cyanobacteria. Water samples for phytoplankton were collected and analyzed at seven points in October 2021. Filaments of heterocytous cyanobacteria were cultured and analyzed, measuring the cells of the first 30 trichomes. The abundance, diversity and evenness of phytoplankton species were calculated and balneability of beach in relation to algal blooms was evaluated. 106 generic and infrageneric taxa were identified, highlighting the Chlorophyta. Phytoplankton density was higher at Verde Lake (145.6 ± 22.0 org.L-1), diversity and evenness were higher at point 03 (Lake Verde) with 3.0 bits.cell-1 and 0.47, respectively. The most abundant species were: Aphanothece minutissima, Ankistrodesmus sp., Aphanothece sp., Aphanizomenon sp., Mougeotia sp., Merismopedia sp. and Quadrigula sp. The average density of cyanobacteria was higher in the Tapajós River (517.0 cell.mL-1). No algal and cyanobacterial blooms were identified, indicating water appropriate for bathing. Through morphological and morphometric description, the cultivated species were identified as Aphanizomenon gracile and Cylindrospermopsis/Raphidiopsis raciborskii, cited among the cyanobacteria with the highest occurrence of toxic blooms in the world. The region deserves phytoplankton monitoring studies, due to reports of cyanobacterial blooms, and greater knowledge of its planktonic biodiversity, since it is a threatened region.

References

Aguilera, A., Gómez, E. B., Kaštovský, J., Echenique, R. O., & Salerno, G. L. (2018). The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (nostocales, cyanobacteria). Phycologia, 57(2), 130-146. DOI: 10.2216/17-2.1

Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Gonçalves, J. L. M. & Sparovek, G. (2013). Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711-728.

American Public Health Association (APHA), American WWAAWE, Federation (WEF) (2017). Standard Methods for the Examination of Water and Wastewater. 23 ed. Washington, DC: American Public Health Association.

Bertassoli, D. J., Sawakuchi, A. O., Sawakuchi, H. O., Pupim, F. N., Hartmann, G. A., McGlue, M. M., Bicudo, D. C. (2017). The fate of carbon in sediments of the xingu and tapajós clearwater rivers, eastern amazon. Frontiers in Marine Science, 4, 1-14. DOI: 10.3389/fmars.2017.00044

Bicudo, C. E. M., & Menezes, M. (2017). Gênero de algas de águas continentais do Brasil: Chave para identificação e descrições. São Paulo, SP: Rima Editora.

Bláhová, L., Babica, P., Adamovský, O., Kohoutek, J., Maršálek, B. & Bláha, L. (2008). Analyses of cyanobacterial toxins (microcystins, cylindrospermopsin) in the reservoirs of the Czech Republic and evaluation of health risks. Environmental Chemistry Letters, 6(4), 223-227.

Bonilla, S., Aubriot, L., Soares, M. C., Gonzalez-Piana, M., Fabre, A., Huszar, V. L., Kruk, C. (2012). What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiol Ecol, 79(3), 594-607. doi: 10.1111/j.1574-6941.2011.01242.x

Brasil (2000). Resolução CONAMA Nº 274, de 29 de novembro de 2000. Define os critérios de balneabilidade em águas brasileiras. Diário Oficial da União, Brasília, DF. https://cetesb.sp.gov.br/aguas-interiores/wp-content/uploads/sites/12/2018/01/RESOLU%C3%87%C3%83O-CONAMA-n%C2%BA-274-de-29-de-novembro-de-2000.pdf

Brasil (2005). Resolução CONAMA N° 357, de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes. Diário Oficial da União, Brasília, DF. https://www.icmbio.gov.br/cepsul/images/stories/legislacao/Resolucao/2005/res_conama_357_2005_classificacao_corpos_agua_rtfcda_altrd_res_393_2007_397_2008_410_2009_430_2011.pdf

Brasil. (2003). Relatório de pesquisa: A mortandade de peixes no rio Iriri (Tech. Rep.). Belém IBAMA/FUNAL/Eletronorte/IEC.

Brito, M. S. (2015). Desmídeas (Chlorophyta) de um lago de inundação de águas claras na Amazônia brasileira gêneros: Cosmarium Corda ex Ralfs e Staurastrum Meyen ex Ralfs (Dissertação de Mestrado). Universidade Federal do Oeste do Pará, Santarém, PA.

Carneiro, T. (2021). Cientistas detectam nível de cianobactérias 22 vezes acima do normal em rio no Pará: Coloração esverdeada e cheiro forte no rio Pará, no nordeste do estado, preocuparam moradores e foram alvos de estudo por pesquisadores do Instituto Evandro Chagas. https://g1.globo.com/pa/para/noticia/2021/02/28/cientistas-detectam-nivel-de-cianobacterias-22-vezes-acima-do-normal-em-rio-no-para.ghtml, Belém.

Cirés, S., & Ballot, A. (2016). A review of the phylogeny, ecology and toxin production of bloom-forming aphanizomenon spp. And related species within the nostocales (cyanobacteria). Harmful Algae, 54, 21-43. DOI: 10.1016/j.hal.2015.09.007

Cirés, S., Delgado, A., Gonzalez-Pleiter, M., & Quesada, A. (2017). Temperature influences the production and transport of saxitoxin and the expression of sxt genes in the cyanobacterium aphanizomenon gracile. Toxins (Basel), 9(10). DOI: 10.3390/toxins9100322

Cunha, E. D. S., Cunha, J. A. C., Silveira Jr., A. M., & Faustino, S. M. M. (2013). Phytoplankton of two rivers in the eastern amazon: Characterization of biodiversity and new occurrences. Acta botanica brasilica, 27(2), 364-377.

Diniz, C., Marinho, R., Cortinhas, L., Sadeck, L., Walfir, P., Shimbo, J., Rosa, M., Azevedo, T. Nota Técnica sobre Sedimentos em Suspensão na Bacia do Tapajós. https://mapbiomas-br site.s3.amazonaws.com/Nota%20T%C3%A9cnica/Nota_T%C3%A9cnica_Sedimentos_Rio_Tapaj%C3%B3s-5.pdf

Ellegaard, M. & Ribeiro, S. (2018). The long-term persistence of phytoplankton resting stages in aquatic 'seed banks'. Biological Reviews, 93(1), 166-183.

Field, C. B., Behrenfield, M. J., Randerson, J. T. & Falkowski, P. (1998). Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science, 281, 237- 240.

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 1-9.

Huisman, J., Codd, G.A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H. & Visser, P. M. (2018). Cyanobacterial blooms. Nature Reviews Microbiology ,16, 471- 483.

Junk, W. J., Krambeck, H. (2000). Climate and Hydrology. In: Junk, W. J., Piedade, M. T. F., Soares, M. G. M. (Org.), The Central Amazon Floodplain: Actual use and options for a sustainable management, Leiden: Backhuys Publishers.

Komárek, J. (2013). Cyanoprokaryota 3. Teil: Heterocytous genera (Süβwasserflora von Mitteleuropa Freshwater Flora of Central Europe). Heidelberg, Germany: Springer Spektrum.

Komárek, J., & Anagnostidis, K. (2005). Cyanoprocaryota 2. Teil: Oscillatoriales (Süβwasserflora von Mitteleuropa Freshwater Flora of Central Europe). Heidelberg, Germany: Springer Spektrum.

Komárek, J., & Anagnostidis, K. (2008). Cyanoprocaryota 1. Teil: Chroococcales (Süβwasserflora von Mitteleuropa Freshwater Flora of Central Europe). Heidelberg, Germany: Springer Spektrum.

Lobo, E., & Leighton, G. (1986). Estructuras comunitarias de las fitocenosis planctonicas de los sistemas de desembocaduras de rios y esteros de la zona central de chile. Revista Biología Marina, 22(1), 1-29.

Lobo, F., Costa, M., Novo, E., & Telmer, K. (2017). Effects of small-scale gold mining tailings on the underwater light field in the tapajós river basin, Brazilian Amazon. Remote Sensing, 9(8), 861. DOI: 10.3390/rs9080861

Lopez, L. C. S, Alves, R. R. N & Rios, R. I (2009). Microenvironmental factors and the endemism of bromeliad aquatic fauna. Hydrobiologia, 625: 151-156.

Monteiro, M. D. R., Melo, N. F. A. C., Alves, M. A. M.S., & Paiva, R.S. (2009). Composição e distribuição do microfitoplâncton do rio Guamá no trecho entre Belém e São Miguel do Guamá, Pará, Brasil. Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais, 4(3), 341-351.

Novo, E. M. L.M., Barbosa, C. C.F., Freitas, R. M., Shimabukuro, Y. E., Melack, J. M., & Filho, W. P. (2006). Seasonal changes in chlorophyll distributions in amazon floodplain lakes derived from modis images. Limnology, 7(3), 153-161. DOI: 10.1007/s10201-006-0179-8

Paerl, H. W. (2018). Mitigating Toxic Planktonic Cyanobacterial Blooms in Aquatic Ecosystems Facing Increasing Anthropogenic and Climatic Pressures. Toxins (Basel), 10(2), 1-16.

Pagni, R. L., Falco, P. B., & Santos, A. C. A. (2020). Autecology of cylindrospermopsis raciborskii (woloszynska) seenayya et subba raju. Acta Limnologica Brasiliensia, 32, e24. DOI: 10.1590/s2179-975x10317

Paiva, R. S., Eskinazi-Leça, E., Silva-Cunha, M. G. G. & Melo, N. F. A. C. (2006). Considerações ecológicas sobre o fitoplâncton da baía do Guajará e foz do rio Guamá, Pará, Brasil. Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais, 1(2), 133-146.

Ramos, G. J. P., Bicudo, C. E. M., & Moura, C. W. N. (2018). Diversity of green algae (chlorophyta) from bromeliad phytotelmata in areas of rocky outcrops and "restinga", Bahia state, Brazil. Rodriguésia, 69(4), 1973-1985. DOI: 10.1590/2175-7860201869431

Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 110(2), 1-61. DOI: 10.1099/00221287-111-1-1

Roland, F., Esteves, F. A., & Barbosa, F. A. R. (2002). Relationship between antropogenically caused turbidity and phytoplankton production in clear amazonia floodplain lake. Amazoniana, 17(1/2), 65-77.

Round, F. E., Crawford, R. M. & Mann, D. G. (1990). Diatoms: Biology and Morphology of the Genera. Cambridge, GB: Cambridge University Press.

Sá, L. L. C., Vieira, J. M. S., Mendes, R. A., Pinheiro, S. C. C., Vale, E. R., Alves, F. A. S., Jesus, I. M., Santos, E. C. O. & Costa, V. B. (2010). Occurrence of toxic cyanobacterial bloom in the left margin of the Tapajós river, in the Municipality of Santarém (Pará State, Brazil). Revista Pan-Amazonica de Saude, 1(1), 159-166.

Santos, P. R. B., Sousa, J. S. C., Sousa, K. N. S., Melo, S. & Pereira, A. C. (2020). Variabilidade espacial-temporal da comunidade fitoplanctônica no reservatório da usina hidrelétrica de Curuá- Una. Brazilian Journal of Development, 6(7), 42969-42985. DOI: 10.34117/bjdv6n7-059

Sena, B. A., Costa, V. B., Nakayama, L. & Rocha, R. M. (2015). Composition of Microphytoplankton of an Estuarine Amazon River, Pará, Brazil. Biota Amazónia, 5(2), 1-9.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379-423. DOI: 10.1002/j.1538-7305.1948.tb01338.x

Silva, R. P. T. (2017). Caracterização e influência da brisa do Rio Tapajós sobre dados meteorológicos na floresta nacional do tapajós. (Tese de Doutorado). Universidade Federal do Oeste do Pará, Santarém, Pará.

Silva, S. C. F., Peleja, J. R. P. & Melo, S. (2019). Flutuação temporal de cianotoxinas (Microcistina) no rio Tapajós (Santarém, Amazônia-Brasil). Scientia Plena, 15(8), 082402.

Sinha, E., Michalak, A. M. & Balaji, V. (2017). Eutrophication will increase during the 21st century as a result of precipitation changes. Science, 357(6349), 405-408.

Sousa, E. B., Gomes, A. L., Cunha, C. J. S., Faial, K. C. F. & Costa, V. B. (2015). Dinâmica Sazonal do Fitoplâncton do Parque Estadual do Charapucu (Afuá, Arquipélago do Marajó, Pará, Brasil). Biota Amazónia, 5(4), 34- 41. DOI: http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v5n4p34-41.

Sousa, E. B., Oliveira, G. J., Gomes, A. L., Cunha, C. J.S., Corrêa, H. K. A. & Costa, V. B. (2017). Monitoramento de cianobactérias nos reservatórios de abastecimento de Belém: entendendo os riscos. In Alfaro, A.T.S. and Trojan, D.G. (Org.), Ciências Ambientais e o Desenvolvimento Sustentável na Amazônia 2. (2 eds, pp. 95-105.), Curitiba-PR: Atena Editora.

Svircev, Z., Lalic, D., Savic, G. B., Tokodi, N., Backovic, D., Chen, L., Meriluoto, J. & Codd, G. A. (2019). Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch Toxicol, 93(9), 2429-2481.

Torres, K. M. A., Lopes, R. B., Passos, C. J. S., Pereira, A. C., & Moura, L. S. (2020). Dominance of potentially toxic cyanobacteria on the waterfront of Santarém, Tapajós river, Brazilian Amazon. Revista Ibero-Americana de Ciências Ambientais, 11(6), 298-314. DOI: 10.6008/cbpc2179-6858.2020.006.0025

Van den Hoek, C., Mann, D. G., & Jahns, H. M. (1996). Algae An introduction to phycology. Cambridge, GB: Cambridge University Press.

Wang, H., Xu, C., Liu, Y., Jeppesen, E., Svenning, J. C., Wu, J., Zhang, W., Zhou, T., Wang, P., Nangombe, S., Ma, J., Duan, H., Fang, J. & Xie, P. (2021). From unusual suspect to serial killer: Cyanotoxins boosted by climate change may jeopardize megafauna. The Innovation, 2(2), 100092.

Wood, R. (2016). Acute animal and human poisonings from cyanotoxin exposure - A review of the literature. Environ Int., 91, 276-282.

Wu, Z., Shi, J., Xiao, P., Liu, Y., & Li, R. (2011). Phylogenetic analysis of two cyanobacterial genera cylindrospermopsis and raphidiopsis based on multi-gene sequences. Harmful Algae, 10(5), 419-425. DOI: 10.1016/j.hal.2010.05.001

Xie, J., Yu, G., Xu, X., Li, S., & Li, R. (2017). The morphological and molecular detection for the presence of toxic cylindrospermopsis (nostocales, cyanobacteria) in Beijing city, China. Journal of Oceanology and Limnology, 36(2), 263-272. DOI: 10.1007/s00343-018-6283-x

Yilmaz, M., Foss, A. J., Selwood, A. I., Ozen, M., & Boundy, M. (2018). Paralytic shellfish toxin producing aphanizomenon gracile strains isolated from lake iznik, turkey. Toxicon, 148, 132-142. DOI: 10.1016/j.toxicon.2018.04.028

Downloads

Published

09/04/2022

How to Cite

SOUSA, E. B. de; GOMES, A. L.; CUNHA, C. J. da S.; PIRES, P. V. B.; PINHEIRO, S. C. C.; COSTA-TAVARES, V. B. Phytoplankton, with emphasis on potentially toxic cyanobacteria, from Amor Island, Alter do Chão (Santarém, Pará, Brazil). Research, Society and Development, [S. l.], v. 11, n. 5, p. e35411528227, 2022. DOI: 10.33448/rsd-v11i5.28227. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/28227. Acesso em: 16 apr. 2024.

Issue

Section

Agrarian and Biological Sciences