Sensitivity analysis to produce anhydrous ethanol using pressure-swing system

Authors

DOI:

https://doi.org/10.33448/rsd-v11i5.28386

Keywords:

Anhidrous etanol; Thermodynamic modelling; Simulation.

Abstract

Pressure-swing distillation is used to separate azeotropic mixtures without the addition of chemical compounds to the system. The objective of the present work was to perform a sensitivity analysis for the system composed by two distillation columns to produce anhydrous ethanol. The used thermodynamic models were validated through experimental data. The simulations were performed using the free software COFE and ChemSep. The operation parameters were evaluated considering the release of practically pure water at the bottom of the low-pressure column, and a bottom release of anhydrous ethanol for the high-pressure column. The final configuration of the system was, for the high-pressure column: 37 stages, fed at stage 14, with a reflux ratio of 0.380. For the low-pressure column: 32 stages, with the feed stream and recycle positioned on trays 30 and 14, respectively, and a reflux ratio of 4.250. The results and the discussion clarify the operation of the column and add knowledge to the separation process.

References

Arce, A., Martínez-Ageitos, J. & Soto, A (1996) VLE for water + ethanol + 1-octanol mixtures. Experimental measurements and correlations. Fluid Phase Equilibria, 122 (1-2), 117-129.

Battisti, R, Claumann, C. A., Marangoni, C. & Machado, R. A. F. (2019) Optimization of pressure-swing distillation for anhydrous ethanol purification by the simulated annealing algorithm. Brazilian Journal of Chemical Engineering, 36 (01), 453-469.

Belicanta, J., Alchorne, J. A. & Silva, M. T. (2016) The brazilian experience with ethanol fuel: aspects of production, use, quality and distribution logistics. Brazilian Journal Of Chemical Engineering. 33 (4), 1091-1102.

Cui, C, Zhan, Q., Zhang, X., Sun, J. & Chien, L. (2022) Dynamics and control of thermal- versus electrical-driven pressure-swing distillation to separate a minimum-boiling azeotrope. Separation and Purification Technology. 280, 1-17.

Dias, R. M. (2016) Estudo de Equilíbrio Líquido-Vapor de Soluções Hidroetanólicas Contendo Frutose. Tese de doutorado - Curso de Engenharia Química, Universidade Federal de São Carlos, São Carlos, Brasil.

Grybat, A. (2021) DDBST - Dortmund Data Bank Software & Separation Tecnology GmbH. http://www.ddbst.com/ddb.html.

Kiran, B & Jana, A. K. (2015) A hybrid heat integration scheme for bioethanol separation through pressure-swing distillation route. Separation and Purification Technology. 142, 307-315.

Kumar, S., Singh, N. & Prasad, R (2010) Anhydrous ethanol: a renewable source of energy. Renewable and Sustainable Energy Reviews, 14 (7), 1830-1844.

Liang, S., Cao, Y., Liu, X., Lin, X., Zhao, Y & Wang, Y. (2017) Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control. Chemical Engineering Research and Design, 117, 318-335.

Lira, F. P. (2015) Análise experimental do consumo de um veículo flex operando com diferentes misturas de gasolina/etanol em tráfego urbano. Dissertação de mestrado. Engenharia Mecânica. Universidade Federal do Rio Grande do Norte, Natal, Brasil.

Martins, C. Z. (2018) Avaliação da produção de etanol de segunda geração. Monografia de graduação. Engenharia Química. Universidade Federal de Uberlândia, Uberlândia, Brasil.

Moussa, L. S. (2001) Análise Termodinâmica de Colunas de Destilação Visando à Otimização Energética. Tese de doutorado, Engenharia Química, Universidade Estadual de Campinas, Campinas, Brasil.

Muller, T. A., Resende, J. T. V., Spinosa, W. A., Guerra, E. P. & Constantino, L. V. (2019). Produção de álcool a partir de cultivares de batata nas seleções

especial e refugo. Research, Society and Development, 9(2), 1-22.

Mulia-Soto, J. F. & Flores-Tlacuahuac, A. (2011) Modeling, simulation and control of an internally heat integrated pressure-swing distillation process for bioethanol separation. Computers & Chemical Engineering, 35 (8), 1532-1546.

Órgão: Ministério de Minas e Energia/Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (2018) RESOLUÇÃO Nº 764, DE 20 DE DEZEMBRO DE 2018, 245th. ed. Brasília, DF, Seção 1, pp. 841. https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/56416199/do1-2018-12-21-resolucao-n-764-de-20-de-dezembro-de-2018-56416135. 2021.

Seader, J. D., Henley, E. J. & Roper, D. K. (2010) Separation process principles: chemical and biochemical operations. 3rd ed., Hoboken: Johnwiley & Sons, Inc.

Santos, L. S. (2016). Projeto de colunas de destilação sujeito a incertezas. Trabalho de conclusão de curso. Escola de Química e Alimentos. Universidade

Federal do Rio Grande, Santo Antônio da Patrulha.

Souza, A. E. C., Cerqueira, D. A., Sousa, N. G. & Cardoso, C. R. (2021) Simulação do processo de destilação extrativa para produção de etanol anidro utilizando etilenoglicol como agente de separação. Research, Society and Development, 10 (4), 1-13.

Vidal, M. F. (2021) Açúcar: cenário mundial e situação de produção no brasil e no nordeste brasileiro. 162. ed. Banco do Nordeste. https://www.bnb.gov.br/s482-dspace/bitstream/123456789/765/3/2021_CDS_162.pdf.

Yang, J., Hou, Z., Dai, Y., Ma, K., Cui, P., Wang, Y., Zhu, Z. & Gao, J. (2020) Dynamic control analysis of interconnected pressure-swing distillation process with and without heat integration for separating azeotrope. Chinese Journal of Chemical Engineering. 29, 67-76.

Published

13/04/2022

How to Cite

OLIVEIRA, L. A.; CERQUEIRA, D. A. .; CARDOSO, C. R. .; SOUSA, N. G. Sensitivity analysis to produce anhydrous ethanol using pressure-swing system. Research, Society and Development, [S. l.], v. 11, n. 5, p. e48111528386, 2022. DOI: 10.33448/rsd-v11i5.28386. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/28386. Acesso em: 25 apr. 2024.

Issue

Section

Engineerings