Influence of thickness on the drying kinetics of beet slices

Authors

DOI:

https://doi.org/10.33448/rsd-v9i3.2940

Keywords:

Diffusivity; Biot number; Page; Analytical solution.

Abstract

The present work aims to evaluate the influence of thickness on the drying kinetics of beet slices and to adjust mathematical models (empirical and diffusive) to experimental data. The beets were cut in three different thicknesses (4, 6 and 8 mm) and the drying kinetics were carried out in an air circulation oven with a speed of 1.5 ms-1, at a temperature of 60 ºC. The empirical (Lewis, Page and Handerson and Pabis) and diffusive mathematical models considering the infinite wall geometry and the boundary condition of the third type were adjusted to the experimental data. The Page model presented as the best fit when compared to the others because it had higher values for R2 (R2> 0.99) and lower values for the chi-square function. The analytical solution of the diffusion equation with infinite wall geometry, showed an increase in the diffusivity and convective coefficient of heat transfer with an increase in the thickness of the slices and the low values of the number of biot indicate that the boundary condition used (third type) described the process satisfactorily. However, when there was an increase in the thickness of the slices, the lesser the variations in humidity inside them over time.

References

Borysiuk, P., Jenczyk-Tolloczko, I., Auriga, R., & Kordzikowski, M. (2019). Sugar beet pulp as raw material for particleboard production. Industrial Crops and Products, 141, 111829.

Chen, H., Fu, X., & Luo, Z. (2015). Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water. Food Chemistry, 168, 302-310.

Food and Agriculture Organization., 2019. Food and Agriculture Organization - FAOSTAT. http://www.fao.org/

faostat/en/#data/QC.

Huang, X., Li, D., & Wang, L. J. (2017). Characterization of pectin extracted from sugar beet pulp under different drying conditions. Journal of Food Engineering, 211, 1-6.

Krokida, M. K., Karathanos, V. T., Maroulis, Z. B., & Marinos-Kouris, D. (2003). Drying kinetics of some vegetables. Journal of Food engineering, 59(4), 391-403.

Kunzek, H., & Vetter, S. (2001). Functional properties of food components and the development of innovative products. Deutsche Lebensmittel-Rundschau, 97(1), 12-22.]

López, R., De Ita, A., & Vaca, M. (2009). Drying of prickly pear cactus cladodes (Opuntia ficus indica) in a forced convection tunnel. Energy Conversion and Management, 50(9), 2119-2126.

Luikov, A.V. (1968). Analytical Heat Diffusion Theory. Academic Press, Inc., Ltd., London.

Moreira, I. D. S., da Silva, W. P., de Castro, D. S., de Melo Silva, L. M., & Gomes, J. P. (2018). Production of kiwi snack slice with different thickness: Drying kinetics, sensory and physicochemical analysis. Australian Journal of Crop Science, 12(5), 778.

Pathak, A. D., Kapur, R., Solomon, S., Kumar, R., Srivastava, S., Singh, P.R., 2014. Sugar

beet: a historical perspective in indian context. Sugar Tech 16, 125–132. https://doi.

org/10.1007/s12355-014-0304-7.

Santos, D. C., Leite, D. D. F., Lisbôa, J. F., Ferreira, J. P. L., Santos, F. S., Lima, T. L. B., Figueiredo, R. M. F., & Costa, T. N. (2019a). Modelling and thermodynamic properties of the drying of acuri slices. Brazilian Journal of Food Technology, 22, e2018031.

Santos, N. C., Barros, S. L., Monteiro, S. S., Silva, S. N., Ribeiro, V. H. A., Silva, V. M. A., & Araújo, R. D. F. (2019b). Kinetics of Drying and Physical-Chemical Quality of Peach cv. Hubimel. Journal of Agricultural Science, 11(16), 223-232.

Silva, W. P., Precker, J. W., e Silva, C. M., & Gomes, J. P. (2010). Determination of effective diffusivity and convective mass transfer coefficient for cylindrical solids via analytical solution and inverse method: Application to the drying of rough rice. Journal of food Engineering, 98(3), 302-308.

Silva, W. P., Farias, V. S. O., Neves, G. A., Lima, A. G. B. (2012). Modeling of water transport in roof tiles by removal of moisture at isothermal conditions. Heat Mass Transf. 48, 809-821.

Santos, N., Barros, S., Almeida, R., Monteiro, S., Nascimento, A., Silva, V., Gomes, J., Luiz, M., & Vieira, D. (2020). Avaliação da Degradação dos Compostos Bioativos do Fruto Physalis (P. peruviana) Durante o Processo de Secagem. Research, Society and Development, 9(1), e102911678.

Sousa, E. P. D., de Figueirêdo, R. M., Gomes, J. P., Queiroz, A. J. D. M., Castro, D. S. D., & Lemos, D. M. (2017). Mathematical modeling of pequi pulp drying and effective diffusivity determination. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(7), 493-498.

Vega, A., Fito, P., Andrés, A., & Lemus, R. (2007). Mathematical modeling of hot-air drying kinetics of red bell pepper (var. Lamuyo). Journal of Food Engineering, 79(4), 1460-1466.

Vilhalva, D. A. A., Soares Júnior, M. S., Caliari, M., & Silva, F. A. D. (2012). Secagem convencional de casca de mandioca proveniente de resíduos de indústria de amido. Pesquisa Agropecuária Tropical, 42(3), 331-339.

Published

18/03/2020

How to Cite

ALMEIDA, R. L. J.; SANTOS, N. C.; SILVA, V. M. de A.; RIBEIRO, V. H. de A.; BARROS, E. R.; CAVALCANTE, J. de A.; QUEIROGA, A. P. R. de; LUÍZ, M. R.; NASCIMENTO, A. R. B. do; NUNES, J. S. Influence of thickness on the drying kinetics of beet slices. Research, Society and Development, [S. l.], v. 9, n. 4, p. e18942940, 2020. DOI: 10.33448/rsd-v9i3.2940. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/2940. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences