Physical and chemical treatments of residual fibers from Cocos nucifera L. aiming application in cement composites

Authors

DOI:

https://doi.org/10.33448/rsd-v11i8.31259

Keywords:

Waste; Biomass; Alkaline treatment; Cement composite.

Abstract

The work aimed to evaluate the coconut mesocarp fibers (Cocos nucifera L.) in natura and submitted them to physical and chemical treatments for application in Portland cement composites. In natura fibers were subjected to four different treatments: immersion in cold water at 21ºC; immersion in hot water at 90ºC; immersion in 5% NaOH aqueous solution; and immersion in 24% H2O2 and 4% NaOH aqueous solution. In natura and treated fibers were evaluated by X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Calorimetric tests were used to assess the influence of fibers obtained from different treatments on the exothermic behavior of cement during hydration. The results indicated that all treatments increased the crystallinity index, especially the alkaline followed by bleaching treatment (41.2%). The calorimetry test suggested that in natura and hot water treated fibers inhibited the cement hydration significantly. On the other hand, cold water, alkaline, and alkaline followed by bleaching treatments exhibited greater potential for application in cementitious composites.

References

Abdel-Kader, A. H. & Darweesh, H. H. (2010). Setting and hardening of agro/cement composites. BioResources, 5(1), 43-54.

Almeida, R. R., Del Menezzi, C. H. S. & Teixeira, D. E. (2002). Utilization of the coconut shell of babaçu (Orbignya sp.) to produce cement-bonded particleboard. BioResource Technology, 85, 159-163.

Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B. & Cheul, U. S. (2007). Development of coconut coir-based lightweight cement board. Construction and Building Materials, 21 (2), 277-288.

Beukes N. & Pletschke, B. I. (2011). Effect of alkaline pre-treatment on enzyme synergy for efficient hemicellulose hydrolysis in sugarcane bagasse. Bioresource technology, 102 (8), p. 5207-5213.

Bledzki, A. K. & Gassan, J. (1999). Einfluß von haftvermittlern auf das feuchteverhalten naturfaserverstärkter kunststoffe. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 236 (1), 129-138.

Bufalino, L., Sena Neto, A. R. De, Tonoli, G. H. D., De Souza Fonseca, A., Costa, T. G., Marconcini, J. M., Colodette, J. L., Labory, C. R. G. & Mendes, L. M. (2015). How the chemical nature of Brazilian hardwoods affects nanofibrillation of cellulose fibers and film optical quality. Cellulose, 22 (6), 3657-3672.

Carijó, O. A., Liz, R. S. & Makashima, N. (2002). Fibra da casca do coco-verde como substrato agrícola. Horticultura Brasileira, 4 (20), 533-535.

Corradini, E., Rosa, M. D. F., Macedo, B. P. D., Paladin, P. D. & Mattoso, L. H. C. (2009). Composição química, propriedades mecânicas e térmicas da fibra de frutos de cultivares de coco verde. Revista Brasileira de Fruticultura, 31 (3), 837-846.

Corrêa, A. C., Teixeira, E. de M., Pessan, L. A. & Mattoso, L. H. C. (2010). Cellulose nanofibers from curaua fibers. Cellulose, 17 (6), 1183-1192.

De Cássia Spacki, K., Da Silva, J. M., Proença, B. D. S. G., Da Costa, J. C. M., Matiucci, M. A., Ressutte, J. B., Ferreira, G. C. A. & Belluco, C. Z. (2020). Aproveitamento De Resíduos Agroindustriais para Produção de Filmes Biodegradáveis na Indústria de Alimentos: Uma Abordagem Conceitual. Em Vieira, V. B., Piovesan, N. & Costa, A. C. dos Santos (Orgs), Investigação cientifica no campo da engenharia e da tecnologia de alimentos. Atena Editora.

Essabir, H., Nekhlaoui, S., Malha, M., Bensala, H. M. O., Arrakhiz, F. Z., Qaiss, A. & Bouhfid, R. (2013a). Bio-composites based on polypropylene reinforced with almond shells particles: mechanical and thermal properties. Materials & Design, 51, 225-230.

Essabir, H., Hilali, E., Elgharad, A., EL Minor, H., Imad, A., Elamraoui, A. & Al Gaoudi, O. (2013b). Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles. Materials & Design, 49, 442-448.

Ferraz, J. M., Del Menezzi, C. H. S., Souza, M. R., Okino, E. Y. A. & Martins, S. A. (2012). Compatibility of pretreated coir fibers (Cocos nucifera L.) with Portland cement to produce mineral composites. International Journal of Polymer Science, 2012, p.1-7.

Fowler, P. A., Hughes, J. M. & Elias, R. M. (2006). Biocomposites: technology, environmental credentials and market forces. Journal of the Science of Food and Agriculture, 86 (12), 1781-1789.

Hachmi, M., Moslemi, A. A. & Campbell, A. G. (1990). A new technique to classify the compatibility of wood with cement. Wood Science and Technology, 24, (4), 345-354.

Hu, X. P.& Hsieh, Y. L. (2001). Effects of dehydration on the crystalline structure and strength of developing cotton fibers. Textile Research Journal, 71 (3), p. 231-239.

Ioelovich, M. (2008). Cellulose as nanostructured polymer: short review. BioResources, 3 (4), 1403-1418.

Izani, M. N., Paridah, M. T., Anwar, U. M. K., Nor, M. M. & H’ng, P. S. (2013). Effects of fiber treatment on morphology, tensile and thermogravimetric analysis of oil palm empty fruit bunches fibers. Composites Part B: Engineering, 45 (1), 1251-1257.

Ji, X., Chen, J., Wang, Q., Tian, Z., Yang, G. & Liu, S. (2015). Boosting oxygen delignification of poplar kraft pulp by xylanase pretreatment. BioResources, 10 (2), 2518-2525.

Fornari Júnior, C. C. M. (2017). Fibras vegetais para compósitos poliméricos. Editus.

Karade, S. R. (2010). Cement-bonded composites from lignocellulosic wastes. Construction and Building Materials, 24 (8), 1323-1330.

López, F., Diaz, M. J., Eugenio, M. E., Ariza, J., Rodriguez, A. & Jimenez, L. (2003). Optimization of hydrogen peroxide in totally chlorine free bleaching of cellulose pulp from olive tree residues. Bioresource Technology, 87 (3), 255-261.

Macêdo, A. N., Souza, A. A. C. & Neto, B. B. P. (2012). Chapas de cimento madeira com resíduos de indústria madeireira da região Amazônica. Associação Nacional de Tecnologia de Ambiente Construído, 12 (2), 131-150.

Martins, A. P., Silva, P.L.R. & Watanabe, T. (2016). O problema do pós-consumo do coco no Brasil: Alternativas e Sustentabilidade. Revista Sustentabilidade em Debate, 7 (1), 44-57.

Mohanty, A. K., Misra, M. & Drzal, L. T. (2005). Natural fibers, biopolymers, and biocomposites. Boca Raton: CRC.

Nazerian, M., Gozali, E., Ghalehno, M. D. (2011). The influence of wood extractives and additives on the hydration kinetics of cement paste and cement-bonded particleboard. Journal of Applied Sciences, 11, 2186-2192.

NBR 5733: Cimento Portland de alta resistência inicial (1991). Associação Brasileira de Normas Técnicas (ABNT).

Nishiyama, Y., Sugiyama, J., Chanzy, H., Langan, P. (2003). Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron diffraction. Journal of American Chemical Society, 125 (47), 14300-14306.

ODLER, I. & Beaudoin, J. (2019). Hydration, setting and hardening of Portland cement. Em Hewlett, P. C. & Liska, M. (Orgs), Lea's Chemistry of cement and concrete. Butterworth-Heinemann, Elsevier.

Olorunnisola, A. O. (2007). Effects of particle geometry and chemical accelerator on strength properties of rattan-cement composites. African Journal of Science and Technology: Science and Engineering Series, 8 (1), 22-27.

Olorunissola, A. O. (2008). Effects of pre-treatment of rattan (Laccosperma secundiflorum) on the hydration of Portland cement and the development of a new compatibility index. Cement and Concrete Composites, 30, 37-43.

Paiva, M. C., Ammar, I., Campos, A. R., Cheikh, R. B. & Cunha, A. M. (2007). Alfa fibres: mechanical, morphological and interfacial characterization. Composites Science and Technology, 67 (6), 1132-1138.

Pickering, K. (2008). Properties and performance of natural-fibre composites. Elsevier.

Ronquim, R. M., Ferro, F. S., Icimoto, F. H., Campos, C. I., Bertollini, M. S., Christoforo, A. L. & Lahr, F. A. R. (2014). Physical and mechanical properties of wood-cement composite with lignocelulosic grading waste variation. International Journal of Composite Materials, 4 (2), 69-72.

Rosa, M., Bezerra, F., Correia, D., Santos, F., Abreu, F., Furtado, A., Brígido, A. K. L., Norões, E. R. de V. (2002) Utilização da Casca de Coco como Substrato Agrícola. EMBRAPA. Série Documentos, 52.

Santos, A. M. (2005). Estudo de compósitos híbridos polipropileno / fibras de vidro e coco para aplicações em engenharia. 2005. 90 p. Dissertação (Mestrado em Engenharia) - Universidade Federal do Paraná, Curitiba.

Segal, L. G. J. M. A., Creely, J. J., Martin Jr, A. E., Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29 (10), 786-794.

Semple, K. E., Cunningham, R. B. & Evans, P. D. (2002). The suitability of Five Western Australian mallee eucalypt species for wood-cement composites. Industrial Crops and Products, 16, 89-100.

Sgriccia, N., Hawley, M. C. & Misra, M. (2008). Characterization of natural fiber surfaces and natural fiber composites. Composites Part A: Applied Science and Manufacturing, 39 (10), 1632-1637.

Da Silva, Everton J., Marques, M. L., Velasco, F. G., Fornari Junior, C. C. M, Luzardo, F. H. M. (2015). Degradação da fibra de coco imersa em soluções alcalinas de cimento e NaOH. Revista Brasileira de Engenharia Agrícola e Ambiental, 19 (10), 981-988.

Wei, W. & Gu, H. (2009). Characterization and utilization of natural coconut fibres composites. Materials and Design, 30, 2741-2744.

Published

30/06/2022

How to Cite

CARDOSO, M. G. S. .; OLIVEIRA, D. N. P. S. de .; BUFALINO, L.; SOUZA, T. M. de . Physical and chemical treatments of residual fibers from Cocos nucifera L. aiming application in cement composites. Research, Society and Development, [S. l.], v. 11, n. 8, p. e57311831259, 2022. DOI: 10.33448/rsd-v11i8.31259. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/31259. Acesso em: 20 apr. 2024.

Issue

Section

Engineerings