Effects of gamma radiation and storage temperatures on the physicochemical characteristics of minimally processed, precooked and vacuum packed carrots

Authors

DOI:

https://doi.org/10.33448/rsd-v11i9.31601

Keywords:

Cobalt 60; Analysis of variance; Tukey test; Samples.

Abstract

Food irradiation has been shown to be efficient in terms of controlling pathogens in minimally processed foods and increasing the shelf life of these products. The present work aimed to evaluate the action of different radiation doses and storage temperatures on minimally processed, pre-cooked and vacuum-packed carrots. The samples were submitted to gamma radiation in a 60Co Multipurpose source at the Institute of Energy and Nuclear Research at doses of 0 kGy (control); 1.0 kGy; 2.0 kGy and 3.0 kGy and stored at room temperature, refrigerator (5°C±1°C) and freezer (-18°C±1°C). The physicochemical parameters analyzed were: soluble solids content, titratable acidity, pH, color, total carotenoids and firmness. These analyzes were performed once a week for a period of three weeks. The statistical method used was analysis of variance (significance level of 5%), followed by Tukey's test. It was found that the use of the irradiation process, for most cases, did not significantly affect the physicochemical parameters of the analyzed samples. Titratable acidity and pH were the parameters most influenced by the use of different radiation doses throughout the storage period. An increase in pH values was observed in treatments with radiation doses. Lower storage temperatures (refrigerator and freezer) were more efficient in maintaining the characteristics of the products throughout the storage period. In general, the doses of 1kGy and 3kGy were the ones that presented values closer to those of the control for the analyzed parameters.

References

AOAC (2005). Official methods of analysis of AOAC international. Gaithersburg: AOAC International.

Barry-Ryan, C. & O’Beirne, D. (2000). Quality of shredded carrots as affect by packaging film and storage temperature. Journal of Food Science, 65, 726-730.

Bellintani, A. S. & Gili, F. N. (2002). Noções básicas de proteção radiológica. IPEN, 53 p.

Bezerra, V. S., Pereora, R. G. F. A., Carvalho, V. D. & Vilela, E. R. (2002). Raízes de mandioca minimamente processadas: efeito do branqueamento na qualidade e conservação. Ciência e Agrotecnologia, 26(3), 564-575.

Bianchessi, S., Braccini, V. P., Rüchel, R., Arbello, D. D. R., Erhardt, M.M. & Jiménez, M. S. E (2021). Utilizando o método irradiação para a conservação dos alimentos. Brazilian Journal of Development, 7(8), 80247-80254.

Bible, B. B. & Singha, S. (1997). Canopy position influences cielab coordinates of peach color. Hortscience, St. Joseph, 28(10), 992-993.

Brasil (2001). Agência Nacional de Vigilância Sanitária. Resolução - RDC Nº 21 DE 26 de janeiro de 2001. Aprova o Regulamento Técnico para irradiação de alimentos. Diário Oficial da União, Brasília, DF, n. 20-E, 29 jan. 2001. Seção 1, p. 35.

Chitarra, M. I. F.& Chitarra, A. B. (2005). Pós-colheita de frutas e hortaliças: fisiologia e manuseio. UFLA, 785 p.

Coelho, A. H. R. (1994). Qualidade pós-colheita de pêssegos. Informe Agropecuário, 17(180), 31-39.

Estevez, M. &Cava, R. (2004). Lipid and protein oxidation, release of iron from heme molecule and colour deterioration during refrigerated storage of liver pate. Meat Science, Barking, 68, 51-558.

Fabbri, A. D. T. (2009). Estudo da radiação ionizante em tomates in natura (Lycopersicum Esculentum Mill) e no teor de licopeno do molho. Dissertação (Mestrado) - Instituto de Pesquisas Energéticas e Nucleares - IPEN, 85 p.

Gomes, J. S., Santos, A. F., Bezerra, J., Silva, R. S., Oliveira, A. S., Paz de Lima, M. E. & Silva, A, A. K. (2020). Recobrimento comestível em jacas minimamente processadas. Research, Society and Development, 9(12), e33891211044.

Hagenmaier, R. D. & Baker, R. A. (1998). Microbial population of shredded carrot in modified atmosphere packaging as related to irradiation treatment. Journal of Food Science, 63(1), 162-164.

International Consultative Group on Food Irradiation - ICGFI. (1999). Facts about food irradiation. Vienna.

Levy, D., Sordi, G. M. A. A. & Villavicencio, A. L. C. H. (2020). Irradiação de alimentos no Brasil: revisão histórica, situação atual e desafios futuros. Brazilian Journal of Radiation Sciences. 08-03 (2020) 01-16.

Lima, K. S. C., Grossi, J. L. S., Lima, A. L. S., Alves; P. F. M. P., Coneglian, R. C. C., Godoy, R. L. O. & Sabaa-Srur, A. U. O. (2001). Efeito da irradiação ionizante γ na qualidade pós-colheita de cenouras (Daucus carota L.) cv. NANTES. Ciência e Tecnologia de Alimentos, 21(2), 202-208.

Mcguire, R. G. (1992). Reporting of objective color measurements. HortScience, St. Joseph, 27(12), 1254-1255.

Medeiros, S. A. F., Amanishi, O. K., Peixoto, J. R., Pires, M. C., Junqueira, N. T. L. & Ribeiro, J. G. B. L. (2009). Caracterização físico-química de progênies de maracujá-roxo e maracujá-azedo cultivados no Distrito Federal. Revista Brasileira de Fruticultura, 31(2), 492-499.

Merritt Junior, C., Vajdi, M. & Angelini, P. (1985). A quantitative comparison of the yields of radiolytic products in various meats and their relationship to precursors. Journal of the American Oil Chemists’ Society, 62,708-713.

Moretti, C. L., Sargent, S. A., Huber, D. J., Calbo, A. G. & Puschmann, R. (1998). Chemical composition and physical properties of pericarp, locule and placental tissues of tomatoes with internal bruising. Journal of the American Society for Horticultural Science, 123(4), 656-660.

Moretti, C. L. (1999). Processamento mínimo de hortaliças: alternativa viável para a redução de perdas pós-colheita e agregação de valor ao agronegócio brasileiro. Horticultura Brasileira, Brasília, DF, 17(2), 1.

Moura, B. A., Santos, A. C., Barros, S. K. A., Arthur, V., Souza, A. R. M. & Silveira, M. F. A. (2020). Aplicação tecnológica de fécula de açafrão (Curcuma Longa L.) irradiada. Research, Society and Development, 9(12), e24091211103.

Paz de Lima, M. E., Santos, A. F., Silva, R. S., Gomes, J. S., Oliveira, A. S., Bezerra, J. M. & Felix de Sousa, S. M. (2021). Melão amarelo minimamente processado submetido a diferentes polímeros naturais. Research, Society and Development, 10(15), e144101522906.

Rela, P.R. (2000). Cresce uso de irradiação para conservação de alimentos. Engenharia de Alimentos, 6(29), 26-29.

Statistical Institue Inc. (2009). SAS® software. Version 9.2. Cary, NC.

Published

06/07/2022

How to Cite

SILVA, V. de C.; PIACENTE, F. J. .; ARTHUR, V.; PIEDADE, S. M. de S. . Effects of gamma radiation and storage temperatures on the physicochemical characteristics of minimally processed, precooked and vacuum packed carrots. Research, Society and Development, [S. l.], v. 11, n. 9, p. e19711931601, 2022. DOI: 10.33448/rsd-v11i9.31601. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/31601. Acesso em: 16 apr. 2024.

Issue

Section

Engineerings