Effect on viability and cellular proliferation of rhBMP-2 immobilized on TEMPO modified cellulose hydrogel

Authors

DOI:

https://doi.org/10.33448/rsd-v11i11.33260

Keywords:

rhBMP2; TEMPO modified cellulose nanofibrils; Immobilization; Grafting; Cell proliferation.

Abstract

BMP´s are signaling proteins that belong to the Transforming Growth Factor-β (TGF-β) superfamily. These proteins promote the recruitment and differentiation of mesenchymal progenitor cells into bone forming cells, the osteoblasts and increase the rate of bone formation. The carrier systems to release rhBMP-2 to the action site are based on the use of free and soluble BMP incorporated into biopolymers such as collagen, gelatin, chitosan, hyaluronic acid and silk. The fused rhBMP-2-thioredoxin could be an interesting approach for new advances in the field of carrying systems of these growth factors. The fused protein thioredoxin can be useful as a coupling agent of BMP-2 to the carrier system, binding it to the surface of the matrix and it is one of the main aims of this work. The recombinant protein rhBMP-2 was produced by IPTG induction obtaining a soluble protein without the need for refolding process. The immobilization of rhBMP-2 at the surface of the TEMPO modified cellulose nanofibrils was indicated by FTIR spectroscopy. The cellular viability tests indicated increased proliferative behavior of both, C2C12 and stem cells from rats, when seeded in presence of rhBMP2 when compared to the free rhBMP2 substrate. The calcified extracellular matrix confirmed the increased activity of the rhBMP2-cellulose substrate, indicating the success of the proposed method. The cell proliferation assays indicated the method used to immobilize rhBMP2 onto the surface of the TEMPO modified cellulose was successful. The cells growth increased when compared to the reference sample free of rhBMP2.

References

Agrawal, V., & Sinha, M. (2017). A review on carrier systems for bone morphogenetic protein-2. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 105(4), 904–925. https://doi.org/10.1002/jbm.b.33599

Algar, W. R. (2017). A Brief Introduction to Traditional Bioconjugate Chemistry. Em Chemoselective and Bioorthogonal Ligation Reactions (p. 1–36). John Wiley & Sons, Ltd. https://doi.org/10.1002/9783527683451.ch1

Dimitriou, R., & Giannoudis, P. V. (2005). Discovery and development of BMPs. Injury, 36(3), S28–S33. https://doi.org/10.1016/j.injury.2005.07.031

Gautschi, O. P., Frey, S. P., & Zellweger, R. (2007). Bone Morphogenetic Proteins in Clinical Applications. ANZ Journal of Surgery, 77(8), 626–631. https://doi.org/10.1111/j.1445-2197.2007.04175.x

Karageorgiou, V., Meinel, L., Hofmann, S., Malhotra, A., Volloch, V., & Kaplan, D. (2004). Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. Journal of Biomedical Materials Research Part A, 71A(3), 528–537. https://doi.org/10.1002/jbm.a.30186

Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J. M., Fujisawa-Sehara, A., & Suda, T. (1994). Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. Journal of Cell Biology, 127(6), 1755–1766. https://doi.org/10.1083/jcb.127.6.1755

Khojasteh, A., Behnia, H., Naghdi, N., Esmaeelinejad, M., Alikhassy, Z., & Stevens, M. (2013). Effects of different growth factors and carriers on bone regeneration: A systematic review. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 116(6), e405–e423. https://doi.org/10.1016/j.oooo.2012.01.044

Kim, Y., Ho, S. O., Gassman, N. R., Korlann, Y., Landorf, E. V., Collart, F. R., & Weiss, S. (2008). Efficient Site-Specific Labeling of Proteins via Cysteines. Bioconjugate Chemistry, 19(3), 786–791. https://doi.org/10.1021/bc7002499

Kumar, P., Nagarajan, A., & Uchil, P. D. (2018). Analysis of Cell Viability by the MTT Assay. Cold Spring Harbor Protocols, 2018(6). https://doi.org/10.1101/pdb.prot095505

LaVallie, E. R., DiBlasio, E. A., Kovacic, S., Grant, K. L., Schendel, P. F., & McCoy, J. M. (1993). A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/Technology (Nature Publishing Company), 11(2), 187–193. https://doi.org/10.1038/nbt0293-187

Long, S., Truong, L., Bennett, K., Phillips, A., Wong-Staal, F., & Ma, H. (2006). Expression, purification, and renaturation of bone morphogenetic protein-2 from Escherichia coli. Protein Expression and Purification, 46(2), 374–378. https://doi.org/10.1016/j.pep.2005.09.025

Nandi, S. K., Roy, S., Mukherjee, P., Kundu, B., De, D. K., & Basu, D. (2010). Orthopaedic applications of bone graft & graft substitutes: A review. The Indian Journal of Medical Research, 132, 15–30.

Okamoto, M., Murai, J., Yoshikawa, H., & Tsumaki, N. (2006). Bone Morphogenetic Proteins in Bone Stimulate Osteoclasts and Osteoblasts During Bone Development. Journal of Bone and Mineral Research, 21(7), 1022–1033. https://doi.org/10.1359/jbmr.060411

Retnoningrum, D. S., Pramesti, H. T., Santika, P. Y., Valerius, O., Asjarie, S., & Suciati, T. (2012). Codon optimization for high level expression of human bone morphogenetic protein – 2 in Escherichia coli. Protein Expression and Purification, 84(2), 188–194. https://doi.org/10.1016/j.pep.2012.05.010

Ruhé, P. Q., Boerman, O. C., Russel, F. G. M., Mikos, A. G., Spauwen, P. H. M., & Jansen, J. A. (2006). In vivo release of rhBMP-2 loaded porous calcium phosphate cement pretreated with albumin. Journal of Materials Science: Materials in Medicine, 17(10), 919. https://doi.org/10.1007/s10856-006-0181-z

Saito, T., Kimura, S., Nishiyama, Y., & Isogai, A. (2007). Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules, 8(8), 2485–2491. https://doi.org/10.1021/bm0703970

Sharapova, N. E., Kotnova, A. P., Galushkina, Z. M., Lavrova, N. V., Poletaeva, N. N., Tukhvatulin, A. E., Tukhvatullin, A. E., Semikhin, A. S., Gromov, A. V., Soboleva, L. A., Ershova, A. S., Zaĭtsev, V. V., Sergienko, O. V., Lunin, V. G., & Kariagina, A. S. (2010). [Production of the recombinant human bone morphogenetic protein-2 in Escherichia coli and testing of its biological activity in vitro and in vivo]. Molekuliarnaia Biologiia, 44(6), 1036–1044.

Termaat, M. F., Den Boer, F. C., Bakker, F. C., Patka, P., & Haarman, H. J. T. M. (2005). Bone morphogenetic proteins. Development and clinical efficacy in the treatment of fractures and bone defects. The Journal of Bone and Joint Surgery. American Volume, 87(6), 1367–1378. https://doi.org/10.2106/JBJS.D.02585

Trovatti, E., Cunha, A. G., Carvalho, A. J. F., & Gandini, A. (2017). Furan-modified natural rubber: A substrate for its reversible crosslinking and for clicking it onto nanocellulose. International Journal of Biological Macromolecules, 95, 762–768. https://doi.org/10.1016/j.ijbiomac.2016.11.102

Trovatti, E., Tang, H., Hajian, A., Meng, Q., Gandini, A., Berglund, L. A., & Zhou, Q. (2018). Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Carbohydrate Polymers, 181, 256–263. https://doi.org/10.1016/j.carbpol.2017.10.073

Wang, R. N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., Zhang, Q., Ye, J., Yan, Z., Denduluri, S., Idowu, O., Li, M., Shen, C., Hu, A., Haydon, R. C., Kang, R., Mok, J., Lee, M. J., Luu, H. L., & Shi, L. L. (2014). Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes & Diseases, 1(1), 87–105. https://doi.org/10.1016/j.gendis.2014.07.005

Xiao, Y.-T., Xiang, L.-X., & Shao, J.-Z. (2007). Bone morphogenetic protein. Biochemical and Biophysical Research Communications, 362(3), 550–553. https://doi.org/10.1016/j.bbrc.2007.08.045

Yu, N. Y. C., Schindeler, A., Peacock, L., Mikulec, K., Baldock, P. A., Ruys, A. J., & Little, D. G. (2010). In vivo local co-delivery of recombinant human bone morphogenetic protein-7 and pamidronate via poly-D, L-lactic acid. European Cells & Materials, 20, 431–441; discussion 441-442. https://doi.org/10.22203/ecm.v020a35

Zhang, Y., Ma, Y., Yang, M., Min, S., Yao, J., & Zhu, L. (2011). Expression, purification, and refolding of a recombinant human bone morphogenetic protein 2 in vitro. Protein Expression and Purification, 75(2), 155–160. https://doi.org/10.1016/j.pep.2010.07.014)

Downloads

Published

29/08/2022

How to Cite

COLANGE, A. L. .; OLIVEIRA, C. S. de .; DOMINGOS NETO, B.; ARAÚJO, H. S. S. de .; TROVATTI, E.; IEMMA, M. R. da C. Effect on viability and cellular proliferation of rhBMP-2 immobilized on TEMPO modified cellulose hydrogel . Research, Society and Development, [S. l.], v. 11, n. 11, p. e471111133260, 2022. DOI: 10.33448/rsd-v11i11.33260. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/33260. Acesso em: 20 apr. 2024.

Issue

Section

Health Sciences