Biochar and phosphate fertilization under soil fertility and initial development of conilon coffee clonal seedlings

Authors

DOI:

https://doi.org/10.33448/rsd-v11i16.37431

Keywords:

Plant nutrition; Coffee crop; Biomass.

Abstract

The association between organic sources, such as biochar, with phosphate fertilization, improves the efficiency of P, reducing its adsorption. This work aimed to determine the influence of biochar and phosphorus on soil fertility, nutrition and vegetative growth of conilon coffee seedlings. The experiment was conducted in a factorial assay (2x2x3). Being factor A: two conilon coffee clones (C - 120 and C - 199); factor B: two doses of biochar (0 and 40 t ha-1) and factor C: two sources of phosphorus (single superphosphate-SFS and triple superphosphate-SFT) and a control treatment without biochar and without P fertilization. Completely randomized design (DIC) was adopted, with twelve treatments and eight replications, each experimental unit consisting of a 5L pot with a seedling. The work was carried out in a greenhouse with daily manual irrigation. The following were evaluated monthly: seedling height, stem diameter and number of leaves. After 6 months, shoot and root dry matter production was evaluated. With these data, leaf gain, absolute gain in height, absolute gain in diameter, rate of growth in height, rate of diameter growth and total dry matter were calculated. To evaluate the nutrition of the plants, the levels of macronutrients present in the leaves were determined, to evaluate the fertility of the soil, the levels of macronutrients were determined and from these data the sum of exchangeable bases, effective CEC and base saturation were calculated. Simple superphosphate (SFS) is the most efficient phosphate fertilizer to produce conilon coffee seedlings when a dose of 250 kg ha-1 of P2O5 is used. The application of SFS provided the greatest increments in plant height and leaf area, the same effect was observed in leaf nutrients. Biochar has specific effects on some soil nutrients by increasing N and Mg levels and decreasing potential acidity in the soil. And an increase in the nitrogen content in the plant was also observed, but it did not influence the growth of the seedling. There was a synergistic effect of biochar-SFS and biochar-SFT to increase the levels of calcium, magnesium, potassium, nitrogen, and consequently, it has the ability to increase the sum of bases, effective CTC and base saturation. The most suitable genotype to produce seedlings in a greenhouse in Manaus was the clone BRS Ouro Preto C-120.

References

Abreu Júnior., C. H., Muraoka, T., & Lavorante, A. F. (2003). Relationship between acidity and chemical properties of Brasilian soils. Scientia Agricola, 60: 337-343.

Alvares, C. A., Stape, J I., Sentelhas, P. C., Moraes, Q., Leonardo, J., & Sparovek, Q. (2013). Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22: 711-728.

Alves, J.D.N. (2015). Fontes de fósforo no crescimento inicial de mudas de jatobá-d. Nucleus, 12: 1-13

Andrade, C. A. D., Bibar, M. P. S., Coscione, A. R., Pires, A. M. M. & Soares, A. G. (2015). Mineralization and effects of pultry litter biochar on soil cation exchange capacity. Pesquisa Agropecuária Brasileira, 50: 407-416.

Balbino, T. J. (2016). Substratos alternativos para a produção de mudas clonais de Coffea canephora em tubete. Dissertação de mestrado, Universidade Federal de Rondônia, Porto Velho, Amazonas, 64p.

Brasil, E. C., Cravo, M. S., & Viégas, I. J. M. (2020). Recomendações de calagem e adubação para o estado do Pará. (2ª Ed) Embrapa, Brasília, 419p.

Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2013). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60: 393-404, 10.1080/03650340.2013.789870

Cui, L., Noerpel, M. R., Scheckelb, K. G., & Ippolitoc, J. A. (2017). Wheat straw biochar reduces environmental cadmium bioavailability. Environment International, 129: 69-75. doi.org/10.1016/j.envint.2019.02.022

Damaceno, J. B. D., & Oliveira, D. M. (2016). Biocarvão: Um possível condicionador de fósforo em solos amazônicos. Desarrollo Local Sostenible, 9: 1-8.

Davanso, V. M., Souza, L. A., Medri, M. E., Pimenta, A., & Bianchini, E. (2002). Photosynthesis, Growth and development of Tabebuia ovellanedae Lor. Ex Griseb. (Bignoniaceae) in flooded soil. Brazilian Archives of Biology and Technology, 45: 375-384.

Deluca, T. H., Mackenzie, M. D., & Gundale, M. J. (2009). Biochar effects on soil nutrient transformation. In: Lehmann, J., Joseph, S. (Ed.). Biochar for Environmental Management: Science and Technology. London: Earthscan, 251-270p.

El-Naggar, A., Lee, S. S., Awad, Y. A., Yang, X., Ryu, C., Rizwan, M., Rinklebe, J., Tsang, D. C. W., & Ok, S. Y. (2018). Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma, 332: 100-108.

Embrapa (1979). Manual de análises químicas de solos, plantas e fertilizantes. Embrapa Informação Tecnológica, Brasília.

Embrapa (1999). Manual de análises químicas de solos, plantas e fertilizantes. Embrapa Informação Tecnológica, Brasília.

Fageria, N. K., & Moreira, A. (2011). O papel da nutrição mineral no crescimento radicular de plantas de cultivo. Avanços em Agronomia, Burlington: Academic Press, 331p.

Fernandes, C., & Muraoka, T. (2002). Absorção de fósforo por híbridos de milho cultivados em solo de cerrado. Scientia Agricola, 59: 781-787.

Fidel, R. B., Laird, D. A., Thompson, M. L., & Lawrinenko, M. (2017). Characterization and quantification of biochar alkalinity. Chemosphere, 167: 367–373. 10.1016/j.chemosphere.2016.09.151

Figueredo, N. A., Costa, L. M., Melo, L. C. A., Siebeneichlerd, E. A., & Tronto, J. (2017). Characterization of biochars from different sources and evaluation of release of nutrients and contaminants. Revista Ciência Agronômica, 48:395-403. 10.5935/1806-6690.20170046

Freiberger, M. B., Guerrini, I. A., Castoldi, G., & Pivetta, L. G. (2014). Adubação fosfatada no crescimento inicial e na nutrição de mudas de pinhão-manso. Revista Brasileira de Ciência do Solo, 38: 232-239.

Goldschmidt, E. E., & Huber, S. C. (1992). Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiology, 99:1443-1448.

Guimaraes, R.S., Padilha, F.J., Cedano, J.C.C., Damaceno, J.B.D., Werber, H., Gama, R.T., Oliveira, D.M., Teixeira, W., & Falcao, N.P.S. (2017). Efeito Residual de Biocarvão e Pó de Serra nos Teores de Carbono e Nitrogênio Total em Latossolo Amarelo na Amazônia. Revista Virtual de Química, 9: 1944-1956.

Kerbauy, G. B. (2012). Fisiologia vegetal. 2. ed. Rio de Janeiro: Guanabara Koogan, 431 p.

Kinpara, D. I. (2003). A importância estratégica do potássio para o Brasil. Planaltina: Embrapa Cerrados, 27p.

Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: science and technology. Earthscan, London, 207-226p.

Lima, I. S., Gonzaga, M. I. S., Almeida, A. Q., & Massaranduba, W. M. (2017). Lixiviação de íons em argissolo amarelo tratado com biocarvão de casca de coco seco e cultivado com girasol (Helianthus annus L.). Revista Brasileira de Agricultura Irrigada, 11: 1956-1965.

Lima, S. L., Marimon Junior, B. H., Melo-Santos, K. S., Reis, S. M., Petter, F. A., Vilar, C. C., & Marimon, B. S. (2016). Biochar no manejo de nitrogênio e fósforo para a produção de mudas de angico. Pesquisa Agropecuária Brasileira, 51: 1-14. 10.1590/s0100-204x2016000200004

Lusiba, S., Odhiambo, J., & Ogola, J. (2017). Growth, yield and water use efficiency of chickpea (Cicer arietinum): response to biochar and phosphorus fertilizer application. Archives of Agronomy and Soil Science, 64: 1-14. 10.1080/03650340.2017.1407027

Malavolta, E., (2006). Manual de nutrição de plantas. São Paulo: Agronômica Ceres, 631p.

Malavolta, E. (1993). “Calagem,” in Nutrição mineral e adubação do cafeeiro. Editora Agronômica Ceres, São Paulo, 59p.

Martins, L. D., Tomaz, M. A., Amaral, J. F. T., Christo, L. F., Rodrigues, W. N., Colodetti, T. V., & Brinati, S. V. B. (2013). Alterações morfológicas em clones de cafeeiro conilon submetidos a níveis de fósforo. Scientia Plena, 9: 1-10.

Martinsen, V., Alling, V., Nurida, N. L. , Mulder, J., Hale, S. E, Ritz, C., Rutherford, D. W., Heikens, A., Breedveld, G. D., & Cornelissen, G. (2015). pH effects of the addition of three biochars to acidic Indonesian mineral soils. Soil Science and Plant Nutrition, 61: 821–834. 10.1080/00380768.2015.1052985

Miyazawa, M., Pavan, M. A., Muraoka, T., Carmo, C. A. F. S., & Melo, W. J. (1999). Análise química de tecidos vegetais. In: Silva, F.C. (Ed.). Manual de Análise Química de Solos,Plantas e Fertilizantes. EMBRAPA, Brasília, p. 172-223.

Monteiro, R. S., Oliveira, V. E. A., Malta, A. O., Pereira, W. E., Silva, J. A., & Malta, A. O. (2018). Produção de mudas de cafeeiro em função da época e da adubação fosfatada. Revista PesquisAgro, Confresa-MT. 1: 29-38.

Mukherjee, A., Lal, R., & Zimmerman, A. R. (2014). Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Science of the Total Environment, 487: 26–36.

Novais, R. F., & Smyth, T. J. (1999). Fósforo em solo e planta em condições tropicais. Universidade Federal de Viçosa, Viçosa, 399p.

Novotny, E., Hayes, M. H. B., Madari, B. E., Bonagamba, T. J., Azevedo, E. R., Souza, A. A., Song, G., Nogueira, C. M., & Mangrich, A. S. (2009). Lessons from the Terra Preta de Índios of the Amazon Region for the utilization of charcoal for soil amendment. Journal of the Brazilian Chemical Society, 20: 1003-1010.

Oladele, S., Adeyemo, A., Awodun, M., Ajayi, A., & Fasina, A. (2019). Efects of biochar and nitrogen fertilizer on soil physicochemical properties, nitrogen use efciency and upland rice (Oryza sativa) yield grown on an Alfsol in Southwestern Nigeria. International Journal of Recycling of Organic Waste in Agriculture, https://doi.org/10.1007/s40093-019-0251-0

Peluzio, J. M., Casali, V. W., Lopes, N. F., Miranda, G. V., & Santos, G. R. (1999). Comportamento da fonte e do dreno em tomateiro após a poda apical acima do quarto cacho. Ciência Agrotécnica, 23: 510-514

Prezotti, L. C., Gomes, J. A., Dadalto, G. G., & Oliveira, J. A. (2007). Manual de Recomendação de Calagem e Adubação para o Estado do Espírito Santo. SEEA/INCAPER/ CEDAGRO, Vitória, 305p.

Prezotti, L. C., & Guarçoni, M. A. (2013). Guia de interpretação de análise de solo e foliar. Vitória, ES : Incaper, 104p.

Ramalho, A. R., Rocha, R. B., Veneziano, W., & Santos, M. M. (2014). Cultivar de cafeeiro Conilon BRS Ouro Preto: características agronômicas e agroindustriais. Embrapa Rondônia, Comunicado Técnico, Porto Velho, RO. 10p.

Resende, A. V., Furtini Neto, A. E., & Curi, N. (2005). Mineral nutrition and fertilization of native tree species in Brazil: research progress and suggestions for management. Journal of Sustainable Forestry, 20: 45-81.

Rezende, F. A., Santos, V. A. H. F., Maia, C. M. B. F., & Morales, M. M. (2016). Biochar in substrate composition for production of teak seedlings. Pesquisa Agropecuária Brasileira, 51: 1-12. 10.1590/s0100-204x2016000900043

Ros, C. R., Sestari, G., Jaeger, C., Oliveira, E .H., Weber, M. L., Silva, R. F., & Torchelsen, M. (2019). Efeito da calagem e da adubação fosfatada no crescimento inicial e na nutrição das plantas de Khaya ivorensis. Scientia Forestalis, Piracicaba, 47: 430-439. doi.org/10.18671/scifor.v47n123.05

Sanchez, P.A., Villachica, J.H., & Bandy, D.E. (1983). Soil fertility dynamics after clearing a tropical rainforest in Peru. Soil Science Society of America Journal, 47: 1171-1178.

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araujo Filho, J. C., Oliveira, J. B., & Cunha, T. J. F. (2018). Sistema Brasileiro de Classificação de Solos. Embrapa Soils, 5: 1-356.

Santos, J. Z. L., Resende, A. V. D., Furtini Neto, A. E., & Corte, E. F. (2008). Crescimento, acúmulo de fósforo e frações fosfatadas em mudas de sete espécies arbóreas nativas. Revista Árvore, 32: 799-807.

Schulz, H., Dunst, G., & Glaser, B. (2014). No effect level of co-composted biochar on plant growth and soil in a greenhouse experiment. Agronomy, 4: 34-51.

Sigua, G.C., Novak, J.M., Watts, D.W., Johnson, M.G., & Spokas, K. (2016). Efficacies of designer biochars in improving biomass and nutrient uptake of winter wheat grown in a hard setting subsoil layer. Chemosphere, 142: 176-183.

Shen, Q., Hedle, Q., Camps, A. M., & Kirschbaum, M. U. F. (2016). Can biochar increase the bioavailability of phosphorus?. Journal of soil science and plant nutrition, 16: 268-286. doi.org/10.4067/S0718-95162016005000022

Silva, H.A.S., Buzetti, S., Gazola1, R.N., Marques, G.G., Teixeira Filho, M.C.M., & Gazola, R.P.D. 2019. Crescimento inicial de clones de Eucalyptus em função da adubação NPK. Brazilian Journal of Biosystems Engineering, 13:44-50.

Silva, I. M., Schiavon, N. C., França, A. C., Lemos, V. T., Farnezi, M. M. M., & Bênto, B. M. C. (2020). Ácido cítrico e fósforo no crescimento e acúmulo de nutrientes no cafeeiro. Magistra, Cruz das Almas – BA, 30: 523-531.

Soares, J. N., Reis, J. M. R., Sabrina, I., Reis, M. R., & Gontijo, R. G. (2013). Avaliação do desenvolvimento de mudas de jatobá-do-cerrado (Hymenaea Stigonocarpa Mart.) em diferentes fontes de fósforo. Cerrado Agrociências, 4: 35-41.

Sohi, S. P., Krull, E., & Lopez-Capel, R., Bol, A. (2010). Review of biochar and its use and function in soil. In: Sparks, D. L. (Ed.). Advances in Agronomy. Burlington: Academic Press, 82p.

Sousa, A.A.T.C., & Figueiredo, C.C. (2015). Sewage sludge biochar: effects on soil fertility and growth of radish. Biological Agriculture & Horticulture, 32: 127-138.

Spokas K. A., Novak J. M., & Venterea, R. T. (2012). Biochar’s role as an alternative N fertilizer: ammonia capture. Plant Soil, 350: 35-42. 10. 1007/s11104-011-0930-8

Taiz, L., & Zeiger, E. (2013). Fisiologia vegetal. (5.ed.). Artmed, 918p.

Trazzi, P. A., Caldeira, M. V. W., & Colombi, R. (2010). Avaliação de mudas de Tecomastans utilizando biossólido e resíduo orgânico. Revista de Agricultura, 85: 218-226.

Widowati, W., & Asnah, A. (2014). Biochar Can Enhance Potassium Fertilization Efficiency and Economic Feasibility of Maize Cultivation. Journal of Agricultural Science, 6: 1-13. 10.5539/jas.v6n2p24

Wien, H. C. (1997). The physiology of vegetable crops. CAB International, Wallingford, UK.

Woiciechowski, T., Lombardi, K. C., Garcia, F. A. O., & Gomes, G. S. (2018). Nutrientes e umidade do solo após a incorporação de biocarvão em um plantio de Eucalyptus benthamii. Ciência Florestal, 8: 1455-1464. https://doi.org/10.5902/1980509835053

Published

29/11/2022

How to Cite

CASTRO, W. C. de .; DIAS JUNIOR, L. .; SANTOS, . J. S. P. .; SILVA, T. M. P. e .; SANTOS, R. C. dos .; COUTINHO, P. W. R. .; OLIVEIRA, D. M. de .; TICONA-BENAVENTE, C. A. .; FALCÃO, N. P. de S. . Biochar and phosphate fertilization under soil fertility and initial development of conilon coffee clonal seedlings. Research, Society and Development, [S. l.], v. 11, n. 16, p. e56111637431, 2022. DOI: 10.33448/rsd-v11i16.37431. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/37431. Acesso em: 23 apr. 2024.

Issue

Section

Agrarian and Biological Sciences