Bibliographic survey of the causal relationship between Cardiovascular diseases and Covid-19

Authors

DOI:

https://doi.org/10.33448/rsd-v11i16.37905

Keywords:

Cardiomyocytes Injury; SARS-CoV-2; Covid-19.

Abstract

This study aims to perform an integrative literature review to understand the causal relationship between cardiovascular diseases and Covid-19 and to point out new updates on the subject. Currently, the world faces the pandemic of coronavirus disease 2019, a severe acute respiratory syndrome caused by coronavirus SARS-CoV-2, having as one of the most frequent pathological consequences cardiovascular diseases. Infection-related myocardial damage can occur due to multiple reasons, including: decreased oxygen levels due to acute respiratory distress syndrome, damage from direct viral invasion of cardiomyocytes with subsequent cell death, microthrombus formation, and a persistent inflammatory state. Viral invasion impairs the contractile function of cardiomyocytes, triggers electrical dysfunction and alters the balance of the Reinnine Angiotensin Aldosterone system. To date, epidemiological studies indicate that a high pathological relationship between Covid-19 and cardiovascular diseases where both pathologies complement each other to generate simultaneous harmful damage. Given the current compelling evidence that myocardial injury intensifies the severity of Covid-19, cardiac management should be a priority for physicians and health professionals. The harmful relationship between SARS-CoV-2 infection and cardiovascular diseases is notorious, but new searches to better understand its etiology are crucial.

References

Akter, F., Mannan, A., Mehedi, H. H., Rob, M. A., Ahmed, S., Salauddin, A., Hossain, M. S., & Hasan, M. M. (2020). Clinical characteristics and short term outcomes after recovery from COVID-19 in patients with and without diabetes in Bangladesh. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(06), 2031-2038. doi.org/10.1016/j.dsx.2020.10.016

Augustine, R., S, A., Nayeem, A., Salam, S. A., Augustine, P., Dan, P., & Hasan, A. (2022). Increased complications of COVID-19 in people with cardiovascular disease: Role of the renin–angiotensin-aldosterone system (RAAS) dysregulation. Chemico-Biological Interactions, 351. doi.org/10.1016/j.cbi.2021.109738

Bansal, M. (2020). Cardiovascular disease and COVID-19. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(03), 247-250. doi.org/10.1016/j.dsx.2020.03.013

Brem, F., Chaymae, M., Rasras, H., Merbouh, M., Bouazzaoui, M., Bkiyar, H., Abda, N., Zakaria, B., Ismaili, N., Housni, B., & Ouafi, N. (2022). Acute Myocardial Injury Assessed by High Sensitive Cardiac Troponin Predicting Severe Outcomes and Death in Hospitalized Patients with COVID-19 Infection. Clinical and Applied Thrombosis/Hemostasis, 18. doi.org/10.1177/10760296221090227

Dantas, H. L. de L., Costa, C. R. B., Costa, L. de M. C., Lúcio, I. M. L., & Comassetto, I. (2022). Como elaborar uma revisão integrativa: sistematização do método científico. Revista Recien - Revista Científica de Enfermagem, 12(37), 334–345. doi.org/10.24276/rrecien2022.12.37.334-345.

Fignani, D., Licata, G., Brusco, N., Nigi, L., Grieco, G. E., Marselli, L., Overbergh, L., Gysemans, C., Colli, M. L., & Marchetti, P. (2020). SARS-CoV-2 Receptor Angiotensin I Converting Enzyme Type 2 (ACE2) Is Expressed in Human Pancreatic b-Cells and in the Human Pancreas Microvasculature. Frontiers in endocrinology, 13(11). doi.org/10.3389/fendo.2020.596898

Hoffmann, M., Weber, H., Schroeder, S., Muller, M., Drosten, C., & Pohlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181, 271-280. doi.org/10.1016/j.cell.2020.02.052

Hung, Y., Lin, W. Y., Chao, T. F., Liao, J. N., Lin, Y. J., Lin, W. S., Chen, Y. J., & Chen, S. A. (2020). Management of Atrial Fibrillation in COVID-19 Pandemic. Circulation Journal, 84, 1679-1685. doi.org/10.1253/circj.CJ-20-0566

Kozlik, M., Btahuszewska, A., & Kazmierski, M. (2022). Cardiovascular System during SARS-CoV-2 Infection. International Journal of Environmental Research and Public Health, 19, 1184. doi.org/10.3390/ ijerph19031184

Li, B., Yang, J., Zhao, F., Zhi, L., Wang, X., Liu, L., Bi, Z., & Zhao, Y. (2020). Prevalence and impact of cardiovascular metabolic diseases on COVID 19 in China. Clinical Research in Cardiology, 109, 531-538. doi.org/10.1007/s00392-020-01626-9

Nishiga, M., Wang, D. W., Han, Y., Lewis, D. B., & Wu, J. C. (2020). COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. NATURE REVLEWS CARDIOLOGY, 17, 543-558. doi.org/10.1038/ s41569-020-0413-9

Peiris, S., Ordunez, P., Dipette, D., Padwal, R., Ambrosi, P., Toledo, J., Stanford, V., Lisboa, T., Aldighieri, S., & Reveiz, L. (2022). Cardiac Manifestations in Patients with COVID-19: A Scoping Review. Global Heart, 17(1). doi.org/10.5334/ gh.1037

Puntmann, V., Carerj, M., Wieters, I., Fahim, M., Arendt, C., Hoffmann, J., Shchendrygina, A., Escher, F., Nicotera, M., Zeiher, M., Vehreschild, M., & Nagel, E. (2020). Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiology, 5(11), 1265-1273. doi.org/10.1001/jamacardio.2020.3557

Roshdy, A., Zaher, S., Fayed, H., & Coghlan, G. (2021). COVID-19 and the Heart: A Systematic Review of Cardiac Autopsies. Frontiers in Cardiovascular Medicine, 7. doi.org/10.3389/fcvm.2020.626975

Ruiz, V. J. C., Montes, R. I., Puerta, J. M. P. J. M., Ruiza, C., & Rodrígueza, L. M. (2020). SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine and Growth Factor Reviews, 54, 62-75. doi.org/10.1016/j.cytogfr.2020.06.001

Sathish, T., Kapoor, N., Cao, Y., Tapp, R. J., & Zimmet, P. (2020). Proportion of newly diagnosed diabetes in COVID-19 patients: A systematic review and meta-analysis. Wiley, 23(3), 870-874. doi.org/10.1111/dom.14269

Shang, J., Wang, Q., Zhang, H., Wang, X., Wan, J., Yan, Y., & Lin, J. (2021). The relationship between diabetes mellitus and COVID-19 prognosis: a retrospective cohort study in Wuhan, China. The American Journal of Medicine, 134(1), 6-14. doi.org/10.1016/j.amjmed.2020.05.033

Siddiq, M., Chan, A., Miorin, L., Yadaw, A., Beaumont, K., Kehrer, T., Cupic, A., & Iyengara, R. (2021). Functional Effects of Cardiomyocyte Injury in COVID-19. Journal of Virology, 96(2). doi.org/10.1128/JVI.01063-21

Souza, M. T. D., Silva, M. D. D., & Carvalho, R. D. (2010). Revisão integrativa: o que é e como fazer. Einstein (São Paulo), 8, 102-106.

Stone, E., Kiat, H., & McLachlan, C. (2020). Atrial fibrillation in COVID-19: A review of possible mechanisms. The FASEB Journal, 34, 11347-11354. doi.org/10.1096/fj.202001613

Tanacli, R., Doeblin, P., Götze, C., Zieschang, V., Faragli, A., Stehning, C., Korosoglou, G., Erley, J., & Kelle, S. (2021). COVID-19 vs. Classical Myocarditis Associated Myocardial Injury Evaluated by Cardiac Magnetic Resonance and Endomyocardial Biopsy. Frontiers in Cardiovascular Medicine, 8. doi.org/10.3389/fcvm.2021.737257

Xie, Y., Xu, E., Bowe, B., & Aly, Z. A. (2022). Long-term cardiovascular outcomes of COVID-19. NATURE MEDICINE, 28, 583-590. doi.org/10.1038/s41591-022-01689-3

Yang, Y., Wei, Z., Xiong, C., & Qian, H. (2022). Direct mechanisms of SARS CoV 2 induced cardiomyocyte damage: an update. Virology, 19(1), 108. doi.org/10.1186/s12985-022-01833-y

Published

02/12/2022

How to Cite

CARVALHO, F. dos S. .; DIAS, A. H. de Q. .; SANCHES , R. D. .; SEBASTIÃO JUNIOR, M. .; MARASSI, F. . . .; MOLENA, J. L. . . . . . . . . .; SBARDELOTE, P. . . . . .; AMARAL, J. S. P. .; MORENO, M. E.; CARDOSO, A. B. . . . . . . Bibliographic survey of the causal relationship between Cardiovascular diseases and Covid-19. Research, Society and Development, [S. l.], v. 11, n. 16, p. e131111637905, 2022. DOI: 10.33448/rsd-v11i16.37905. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/37905. Acesso em: 26 apr. 2024.

Issue

Section

Health Sciences