Adherence of Escherichia coli and blood elements in titanium discs submitted to anodic oxidation. In vitro study

Authors

DOI:

https://doi.org/10.33448/rsd-v11i16.38288

Keywords:

Titanium; Blood Cells; Cell Adhesion; Bacterial Adhesion; Peri-implantitis.

Abstract

Modifications of implants by means of surface treatments are performed to optimize the biochemical interactions of the bone deposition process. However, if on the one hand they favor the adhesion of blood elements, on the other hand they can also enable the formation of biofilm. This study evaluated the adherence of blood cells and Escherichia coli in titanium discs submitted to surface treatments by anodic oxidation (OA), sandblasting followed by acid etching (JAT) compared with untreated discs (Li). To evaluate the adherence of microorganisms were performed: atomic force microscopy; Field Emission Gun Scanning Electron Microscopy (FEG-SEM); biofilm formation was evaluated by spectrophotometer turbidity analysis and colony forming unit (CFU/mL) before and after simulated brushing. For blood cell adherence, the blood collected from a patient was deposited and fixed on the discs and analyzed in the FEG-SEM being classified according to the "Blood Element Adherence Index". The results showed a slight increase in the adhesion of microorganisms in samples treated by anodic oxidation. However, the microorganisms were distributed singly and not in conglomerates, with no biofilm formation unlike the Li group. Regarding the adherence of blood elements, the Li group showed higher adherence and lower amount was found in the JAT group, but there was no statistically significant difference between the groups. The results of this study suggest that anodic oxidation treatment may favor the adherence of blood cells and fibrin mesh, contributing to the early stages of bone deposition.

References

Al-Ahmad, A., Wiedmann-Al-Ahmad, M., Fackler, A., Follo, M., Hellwig, E., Bachle, M., Kohal, R. (2013). In vivo study of the initial bacterial adhesion on different implant materials. Arch Oral Biol, 58(9), 1139-1147. doi:10.1016/j.archoralbio.2013.04.011

Al-Nawas, B., Groetz, K. A., Goetz, H., Duschner, H., & Wagner, W. (2008). Comparative histomorphometry and resonance frequency analysis of implants with moderately rough surfaces in a loaded animal model. Clin Oral Implants Res, 19(1), 1-8. doi:10.1111/j.1600-0501.2007.01396.x

Albrektsson, T., Branemark, P. I., Hansson, H. A., & Lindstrom, J. (1981). Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand, 52(2), 155-170. doi:10.3109/17453678108991776

Andrade Junior, A. C. C., Andrade, M. R. T. C., Machado, W. A. S., & Fischer, R. G. (1998). In vitro study of dentifrice abrasivity. Revista de Odontologia da Universidade de São Paulo, 12(3), 231-236. doi:10.1590/S0103-06631998000300006

Aoki, M., Takanashi, K., Matsukubo, T., Yajima, Y., Okuda, K., Sato, T., & Ishihara, K. (2012). Transmission of periodontopathic bacteria from natural teeth to implants. Clin Implant Dent Relat Res, 14(3), 406-411. doi:10.1111/j.1708-8208.2009.00260.x

Bernimoulin, J. (2003). Recent concepts in plaque formation. J Clin Periodontol, 30(Suppl 5), 7-9. doi:10.1034/j.1600-051X.30.s5.3.x.

Burgers, R., Gerlach, T., Hahnel, S., Schwarz, F., Handel, G., & Gosau, M. (2010). In vivo and in vitro biofilm formation on two different titanium implant surfaces. Clin Oral Implants Res, 21(2), 156-164. doi:10.1111/j.1600-0501.2009.01815.x

Buser, D., Schenk, R. K., Steinemann, S., Fiorellini, J. P., Fox, C. H., & Stich, H. (1991). Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res, 25(7), 889-902. doi:10.1002/jbm.820250708

Castillo, U., Myers, S., Browne, L., Strobel, G., Hess, W. M., Hanks, J., & Reay, D. (2005). Scanning electron microscopy of some endophytic streptomycetes in snakevine--Kennedia nigricans. Scanning, 27(6), 305-311. doi:10.1002/sca.4950270606

Dhotre, S. V., Davane, M. S., & Nagoba, B. S. (2017). Periodontitis, Bacteremia and Infective Endocarditis: A Review Study. Archives of Pediatric Infectious Diseases, In press(In press). doi:10.5812/pedinfect.41067

Ephros, H., Kim, S., & DeFalco, R. (2020). Peri-implantitis: Evaluation and Management. Dent Clin North Am, 64(2), 305-313. doi:10.1016/j.cden.2019.11.002

Fais, L. M., Fernandes-Filho, R. B., Pereira-da-Silva, M. A., Vaz, L. G., & Adabo, G. L. (2012). Titanium surface topography after brushing with fluoride and fluoride-free toothpaste simulating 10 years of use. J Dent, 40(4), 265-275. doi:10.1016/j.jdent.2012.01.001

Ferreira, C. F., Babu, J., Tipton, D., & Hottel, T. L. (2015). Assessment of the effect of chemical agents used in dentistry on the removal of Porphyromonas gingivalis and Escherichia coli from sandblasted acid-etched titanium dental implants: an in vitro study. Int J Oral Maxillofac Implants, 30(2), 299-307. doi:10.11607/jomi.3703

Furst, M. M., Salvi, G. E., Lang, N. P., & Persson, G. R. (2007). Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Implants Res, 18(4), 501-508. doi:10.1111/j.1600-0501.2007.01381.x

Giessibl, F. (2003). Advances in atomic force microscopy. Reviews of modern physics, 75.

Grossner-Schreiber, B., Griepentrog, M., Haustein, I., Muller, W. D., Lange, K. P., Briedigkeit, H., & Gobel, U. B. (2001). Plaque formation on surface modified dental implants. An in vitro study. Clin Oral Implants Res, 12(6), 543-551. doi:10.1034/j.1600-0501.2001.120601.x

Gurkan, A., Emingil, G., Nizam, N., Doganavsargil, B., Sezak, M., Kutukculer, N., & Atilla, G. (2009). Therapeutic efficacy of vasoactive intestinal peptide in escherichia coli lipopolysaccharide-induced experimental periodontitis in rats. J Periodontol, 80(10), 1655-1664. doi:10.1902/jop.2009.090031

Hall, S., & Lausmaa, J. (2000). Properties of a new porous oxide surface on titanium implants. Appl osseointegration res, 1(30), 5-8.

Hallgren, C., Reimers, H., Chakarov, D., Gold, J., & Wennerberg, A. (2003). An in vivo study of bone response to implants topographically modified by laser micromachining. Biomaterials., 24(5), 701-710.

Han, A., Li, X., Huang, B., Tsoi, J. K. H., Matinlinna, J. P., Chen, Z., & Deng, D. M. (2016). The effect of titanium implant surface modification on the dynamic process of initial microbial adhesion and biofilm formation. International Journal of Adhesion and Adhesives, 69, 125-132. doi:10.1016/j.ijadhadh.2016.03.018

Huang, H.-H. (2002). Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. . Biomaterials, 23, 59-63. doi:10.1016/S0142-9612(01)00079-5

Jepsen, S., Berglundh, T., Genco, R., Aass, A. M., Demirel, K., Derks, J., . . . Zitzmann, N. U. (2015). Primary prevention of peri-implantitis: managing peri-implant mucositis. J Clin Periodontol, 42 Suppl 16, S152-157. doi:10.1111/jcpe.12369

Kawai, K., Iwami, Y., & Ebisu, S. (1998). Effect of resin monomer composition on toothbrush wear resistance. J Oral Rehabil, 25(4), 264-268. doi:10.1111/j.1365-2842.1998.00246.x.

Kim, Y. S., Park, J. B., & Ko, Y. (2019). Surface alterations following instrumentation with a nylon or metal brush evaluated with confocal microscopy. J Periodontal Implant Sci, 49(5), 310-318. doi:10.5051/jpis.2019.49.5.310

Koka, S., Razzoog, M., Bloem, T., & Syed, S. (1993). Microbial colonization of dental implants in partially edentulous subjects. J Prosthet Dent, 70(2), 141-144. doi: 10.1016/0022-3913(93)90009-d.

Le Guehennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater, 23(7), 844-854. doi:10.1016/j.dental.2006.06.025

Lindholm-Sethson, B., & Ardlin, B. I. (2008). Effects of pH and fluoride concentration on the corrosion of titanium. J Biomed Mater Res A, 86(1), 149-159. doi:10.1002/jbm.a.31415

Ma, Q. L., Zhao, L. Z., Liu, R. R., Jin, B. Q., Song, W., Wang, Y., Zhang, Y. M. (2014). Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials, 35(37), 9853-9867. doi:10.1016/j.biomaterials.2014.08.025

Matos, F. G., Santana, L. C. L., Cominotte, M. A., da Silva, F. S., Vaz, L. G., de Oliveira, D. P., & Cirelli, J. A. (2022). Strontium-loaded titanium-15molybdenum surface improves physicochemical and biological propertiesin vitro. Biomed Phys Eng Express, 8(4). doi:10.1088/2057-1976/ac71cf

Mombelli, A. (1993). Microbiology of the dental implant. Adv Dent Res, 7(2), 202-206. doi:10.1177/08959374930070021201

Oliveira, D. P., Palmieri, A., Carinci, F., & Bolfarini, C. (2014). Osteoblasts behavior on chemically treated commercially pure titanium surfaces. J Biomed Mater Res A, 102(6), 1816-1822. doi:10.1002/jbm.a.34855

Park, J. W., Song, C. W., Jung, J. H., Ahn, S. J., & Ferracane, J. L. (2012). The effects of surface roughness of composite resin on biofilm formation of Streptococcus mutans in the presence of saliva. Oper Dent, 37(5), 532-539. doi:10.2341/11-371-l

Pinto, S., Leite, F., Fontanari, L., Cavassim, R., & Leite, A. (2013). Influence of Nicotine and Cotinine Impregnation on the First Step of Periodontal Regeneration: Clot Stabilization. J. Contemp. Dent. Pract.,, 14(6), 1044-1048.

Rupp, F., Gittens, R. A., Scheideler, L., Marmur, A., Boyan, B. D., Schwartz, Z., & Geis-Gerstorfer, J. (2014). A review on the wettability of dental implant surfaces I: theoretical and experimental aspects. Acta Biomater, 10(7), 2894-2906. doi:10.1016/j.actbio.2014.02.040

Rupp, F., Scheideler, L., Olshanska, N., de Wild, M., Wieland, M., & Geis-Gerstorfer, J. (2006). Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A, 76(2), 323-334. doi:10.1002/jbm.a.30518

Smeets, R., Stadlinger, B., Schwarz, F., Beck-Broichsitter, B., Jung, O., Precht, C., . . . Ebker, T. (2016). Impact of Dental Implant Surface Modifications on Osseointegration. Biomed Res Int, 2016, 6285620. doi:10.1155/2016/6285620

Stajer, A., Ungvari, K., Pelsoczi, I. K., Polyanka, H., Oszko, A., Mihalik, E., . . . Turzo, K. (2008). Corrosive effects of fluoride on titanium: investigation by X-ray photoelectron spectroscopy, atomic force microscopy, and human epithelial cell culturing. J Biomed Mater Res A, 87(2), 450-458. doi:10.1002/jbm.a.31764

Suzuki, K., Aoki, K., & Ohya, K. (1997). Effects of surface roughness of titanium implants on bone remodeling activity of femur in rabbits. Bone, 21(6), 507-514. doi:10.1016/s8756-3282(97)00204-4

Tanoue, N., Matsumura, H., & Atsuta, M. (2000). Analysis of composite type and different sources of polymerization light on in vitro toothbrush/dentifrice abrasion resistance. J Dent, 28(5), 355-359

Theodoro, L. H., Sampaio, J. E., Haypek, P., Bachmann, L., Zezell, D. M., & Garcia, V. G. (2006). Effect of Er:YAG and Diode lasers on the adhesion of blood components and on the morphology of irradiated root surfaces. J Periodontal Res, 41(5), 381-390. doi:10.1111/j.1600-0765.2005.00846.x

Tsurumaki, J. N., Souto, B. H. M., Oliveira, G. J. P. L., Sampaio, J. E. C., Marcantonio Junior, E., & Marcantonio, R. A. C. (2013). Morphology and adhesion on blood components in root surfaces treated by a piezoelectric ultrasonic: an in vitro study. . Rev Gaúcha Odonto, 61(2), 169-175.

Wang, X., Fan, H., Zhang, F., Zhao, S., Liu, Y., Xu, Y., Wang, X. (2020). Antibacterial Properties of Bilayer Biomimetic Nano-ZnO for Dental Implants. ACS Biomater Sci Eng, 6(4), 1880-1886. doi:10.1021/acsbiomaterials.9b01695

Downloads

Published

15/12/2022

How to Cite

MATOS, F. G.; ALBACH, T.; BERMÚDEZ, J. P. .; SOUZA, G. B. de .; SANTOS , F. A. dos; PINTO, S. C. S. . Adherence of Escherichia coli and blood elements in titanium discs submitted to anodic oxidation. In vitro study. Research, Society and Development, [S. l.], v. 11, n. 16, p. e462111638288, 2022. DOI: 10.33448/rsd-v11i16.38288. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/38288. Acesso em: 25 apr. 2024.

Issue

Section

Health Sciences