Performance Analysis of the GNSS PPP-RTK Positioning Technique at Different Convergence Times

Authors

DOI:

https://doi.org/10.33448/rsd-v11i16.38680

Keywords:

GNSS positioning; PPP-RTK; Accuracy;; SGB.

Abstract

Precise real-time GNSS positioning, performed globally, unlike RTK and DGPS, requires the user to use only one receiver. However, it needs a global geodetic network to generate products such as precise orbits and satellite clocks. This type of positioning, when it also involves the use of the solution of phase ambiguities as integer values, is called PPP-RTK Positioning Technique. In 2011, Trimble introduced a real-time positioning service called Centerpoint RTX, which uses data from an active global GNSS network of 107 reference stations, along with innovative modeling and compression algorithms to calculate and relay precise satellite orbits. , as well as information and corrections regarding system clock and carrier wave phase ambiguities. Thus, the main objective of this work is to evaluate the accuracy of the PPP-RTK Positioning Technique, using corrections from the Trimble Centerpoint RTX Service in Brazil at three different convergence times. For this, GNSS surveys were carried out in all states of the Federation in SGB Stations, whose coordinates were considered as reference. Student's t statistical tests were applied - to detect possible systematic errors in the data, and the Chi-Square test to assess the accuracy of the coordinates. Finally, the results indicate that the horizontal accuracy gradually improves with the increase in the convergence time, reaching 0.031 ± 0.007 (Trend and Accuracy) for 30 minutes of convergence.

Author Biography

Niel Nascimento Teixeira, Universidade Estadual de Santa Cruz

Niel N. Teixeira é Engenheiro Agrimensor e Doutor em Ciências Geodésicas pela Universidade Federal do Paraná. Atualmente é Professor Titular-Pleno da Universidade Estadual de Santa Cruz. É integrante do Banco de Avaliadores do Sistema Nacional de Avaliação da Educação Superior - BASis (Avaliador Institucional e de Cursos de Graduação). É Líder do grupo de Pesquisa: Posicionamento Geodésico. Tem experiência na área de Engenharia de Agrimensura, com ênfase em Topografia, Geodésia, Ajustamento de Observações, Georreferenciamento de Imóveis Rurais, Técnicas Espaciais de Posicionamento (GNSS), Cartografia, Projeto de Rodovias e Engenharia de Avaliações e Perícias Judiciais.

References

Argus, D. F., Gordon, R. G., & Demets (2011). Geologically current motion of 56 plates relative to the no net rotation reference frame. Geochemistry, Geophysics, Geosystems. 11.

Bertiger, W., Desai, S. D., Haines, B., Harvey, N., Moore, A. W., Owen, S. & Weiss, J. P (2010). Single receiver phase ambiguity resolution with GPS data. Journal of Geodesy, 84, 10.1007/s00190-010-0371-9, 327–337.

Blewitt, G (2006). The fixed point theorem of ambiguity resolution for precise point positioning of GPS networks: Theory and applications. Eos Trans. AGU, 87(52), Fall Meet. Suppl., Abstract G43A0977.

Brandl., M. (2014). Advancing Trimble CenterPoint RTX by adding BeiDou and Galileo. Proceedings of the European Navigation Conference (ENC), Rotterdam, The Netherlands.

Concar, Exército Brasileiro – Concar-Eb (2011). Especificação Técnica para a Aquisição de Dados Geoespaciais Vetoriais. Infraestrutura Nacional de Dados Espaciais. 2.ed.Brasil.

Doucet, K., Herwig, M., Kipka, A., Kreikenbohm, P., Landau, H., Leandro, R., Moessmer, M. & Pagels. C (2017). Introducing Ambiguity Resolution in Webhosted Global Multi-GNSS Precise Positioning with Trimble RTX-PP. <http://www.trimble.com/positioning-services/pdf/RTX_Post_Processing.pdf>. Acesso em: outubro de 2022.

Galo, M. & Camargo, P.O. (1994). Utilização do GPS no controle da qualidade de carta. In:Congresso Brasileiro de Cadastro Técnico Multifinalitário. Florianópolis, p.41-48.

Ge, M., Gendt, G., Rothacher, M., Shi, C. & Liu, J. (2008). Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, 82(7), 10.1007/s00190-007-0187-4, p.389–399.

Geng, J., Teferle, F., Shi, C., Meng, X., Dodson, A. & Liu, J. (2009). Ambiguity resolution in precise point positioning with hourly data. GPS solutions.

Geng, J., Teferle, F. N., Meng, X. & Dodson, A. H. (2011). Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning. Advances in Space Research, 47(10), 10.1016/j.asr.2010.03.030, p. 0273-1177.

Landau, H., Glocker, M., Leandro, R., Nitschke, M., Stolz R. & Zhang F. (2012). Aspects of using the QZSS Satellite in the Trimble CenterPoint™ RTX™ Service: QZSS Orbit and Clock Accuracy, RTX Positioning Performance Improvements, Paper presented at IONGNSS-2012, September 17-21, Nashville, TN, USA.

Lannes, A. & Prieur. J. L. (2014). Integer-ambiguity resolution in astronomy and geodesy. Astronomische Nachrichten 335:2, 198-209. Online publication date: 1-Feb-2014.

Laurichesse, D., Mercier, F. & Berthias, J. P. (2008). Real time zero-difference ambiguities fixing and absolute RTK. ION NTM 2008. San Diego, California.

Leandro, R., Landau H., Nitschke, M., Glocker, S., Seeger, X. Chen, A., Deking, M., Bem Tahar, F., Zhang, R., Stolz, N., Talbolt, G., Lu, K., Ferguson, M., Brandl, V., Gomez Pantoja & A. Kipka, Trimble TerraSat GmbH, Germany (2011). RTX Positioning: the Next Generation of cm-accurate Real-time GNSS Positioning, Paper presented at ION-GNSS-2011, September 20-23, 2011, Portland, OR, USA.

Marques, H. A. (2012). PPP em Tempo Real com Estimativa das Correções dos Relógios dos Satélites no Contexto de Rede GNSS. (Tese – Doutorado em Ciências Cartográficas). Faculdade de Ciências e Tecnologia - Universidade Estadual Paulista, Presidente Prudente.

Merchant, D. C.(1982). Spatial Accuracy Standards for Large Scale Line Maps. In.: Technical Papers of the American Congress on Surveying and Mapping (1), 222-231.

Mervart, L., Lukes, Z., Rocken, C. & Iwabuchi, T. (2008). Precise Point Positioning With Ambiguity Resolution In Real-Time. GPS Solutions Inc., Boulder CO, USA.

Mikhail, E. & Ackerman, F. (1976). Observations and Least Squares. University Press of America, 497 p.

Monico, J. F. G. (2008). Posicionamento pelo GNSS – Descrição, fundamentos e aplicações. Editora UNESP.

Monico, J. F. G, Dal Poz, A. P., Galo, M., Santos, M. C. & Oliveira, L. C. (2009). Acurácia e Precisão: Revendo os Conceitos de Forma Acurada. Bol. Ciênc. Geod., sec. Comunicações, 15(3), 469-483

Petit, G. & B. Luzum. (2010) IERS Conventions (2010). IERS Technical Note 36, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 179 pp.

Teunissen, P. J. G. & Khodabandeh, A. (2014). Review and principles of PPP-RTK methods. Journal of Geodesy, 89(3), 217-240.

Wübbena, G., Schmitz, M. & Bagge, A. (2005). PPP-RTK: Precise Point Positioning using state-space representation in RTK networks. In Proceedings of the 18th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2005), Long Beach, CA, USA, 13–16 September 2005, 2584–2594.

Zhang, F., Brandl, M. & Chen, X. (2013). Trimble CenterPoint RTX – A First Study on Supporting Galileo. Conference: The European Navigation Conference.

Published

16/12/2022

How to Cite

TEIXEIRA, N. N.; CRUZ JÚNIOR, D. C. .; RODRIGUES , W. S. . Performance Analysis of the GNSS PPP-RTK Positioning Technique at Different Convergence Times. Research, Society and Development, [S. l.], v. 11, n. 16, p. e515111638680, 2022. DOI: 10.33448/rsd-v11i16.38680. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/38680. Acesso em: 18 apr. 2024.

Issue

Section

Engineerings