The agroindustrial residue of whey as an eco-friendly solvent in the elaboration of biopolymeric hydrocolloidal film: the study of the optical properties

Authors

DOI:

https://doi.org/10.33448/rsd-v11i17.39189

Keywords:

Food packaging; Ecofriendly films; UV-light; Transparency; Lipid oxidation.

Abstract

The development of ecofriendly packaging, using renewable sources with a short life cycle, such as starch and chitosan, are highlighted in research as technological innovation. In the same sense, liquid whey (residue from the dairy industry) as a solvent (dispersing agent) in obtaining flexible films. The present work aimed to develop films of the starch blend with different concentrations of chitosan, solubilized in liquid whey by the discontinuous casting method. The films were characterized in terms of optical properties (colorimetry, opacity and transparency) and barrier to ultraviolet (UV) radiation. All films of the blends showed a total color difference (ΔE) visible in all treatments, ΔE >12. As well as good UV light radiation barrier property. The treatment with 25% (m/m) of chitosan presented a greater barrier to UV light (200 to 315 nm), region of greater susceptibility to lipid oxidation reactions in foods. Therefore, the whey presented a solvent-dispersing action in the formation of biopolymeric films. Thus, the hydrocolloid films showed a strong technological potential for use and application as ecofriendly packaging for application in dairy products rich in photo-oxidative compounds.

References

Ahmed, M., Pickova, J., Ahmad, T., Liaquat, M., Farid, A., & Jahangir, M. (2016). Oxidation of lipids in foods. Sarhad journal of agriculture, 32(3), 230–238.

Akyuz, L., Kaya, M., Mujtaba, M., Ilk, S., Sargin, I., Salaberria, A. M., Labidi, J., Cakmak, Y. S., & Islek, C. (2018). Supplementing capsaicin with chitosan-based films enhanced the anti-quorum sensing, antimicrobial, antioxidant, transparency, elasticity and hydrophobicity. International Journal of Biological Macromolecules, 115, 438–446.

Argüello-García, E., Solorza-Feria, J., Rendón-Villalobos, J. R., Rodríguez-González, F., Jiménez-Pérez, A., & Flores-Huicochea, E. (2014). Properties of edible films based on oxidized starch and Zein. International Journal of Polymer Science, 2014, 1–9.

Bermúdez-Oria, A., Rodríguez-Gutiérrez, G., Rubio-Senent, F., Fernández-Prior, Á., & Fernández-Bolaños, J. (2019). Effect of edible pectin-fish gelatin films containing the olive antioxidants hydroxytyrosol and 3,4-dihydroxyphenylglycol on beef meat during refrigerated storage. Meat Science, 148, 213–218.

Campos-Requena, V. H., Rivas, B. L., Pérez, M. A., Garrido-Miranda, K. A., & Pereira, E. D. (2015). Polymer/clay nanocomposite films as active packaging material: Modeling of antimicrobial release. European Polymer Journal, 71, 461–475.

Cazón, P., Vázquez, M., & Velazquez, G. (2019). Composite films with UV-barrier properties based on bacterial cellulose combined with chitosan and poly(vinyl alcohol): Study of puncture and water interaction properties. Biomacromolecules, 20(5), 2084–2095.

Costa, R. A., Cavalcante, T. T. A., Melo, C. T. V., Barroso, D. L. A., Melo, H. M., Carvalho, M. G., & Júnior, F. E. A. C. (2018). Antioxidant and antibacterial activities of essential oil of Lippia sidoides against drug-resistant Staphylococcus aureus from food. African Journal of Biotechnology, 8, 232–238.

Dalsgaard, T. K., Otzen, D., Nielsen, J. H., & Larsen, L. B. (2007). Changes in structures of milk proteins upon photo-oxidation. Journal of Agricultural and Food Chemistry, 55(26), 10968–10976.

Donati, I., Stredanska, S., Silvestrini, G., Vetere, A., Marcon, P., Marsich, E., Mozetic, P., Gamini, A., Paoletti, S., & Vittur, F. (2005). The aggregation of pig articular chondrocyte and synthesis of extracellular matrix by a lactose-modified chitosan. Biomaterials, 26(9), 987–998.

Edrisi Sormoli, M., Das, D., & Langrish, T. A. G. (2013). Crystallization behavior of lactose/sucrose mixtures during water-induced crystallization. Journal of Food Engineering, 116(4), 873–880.

Etxabide, A., Uranga, J., Guerrero, P., & de la Caba, K. (2015). Improvement of barrier properties of fish gelatin films promoted by gelatin glycation with lactose at high temperatures. Lebensmittel-Wissenschaft Und Technologie [Food Science and Technology], 63(1), 315–321.

Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 35(6), 1039–1042.

Ge, G., Lu, Y., Qu, X., Zhao, W., Ren, Y., Wang, W., Wang, Q., Huang, W., & Dong, X. (2020). Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano, 14(1), 218–228.

González Sandoval, D. C., Luna Sosa, B., Martínez-Ávila, G. C. G., Rodríguez Fuentes, H., Avendaño Abarca, V. H., & Rojas, R. (2019). Formulation and characterization of edible films based on organic mucilage from Mexican Opuntia ficus-indica. Coatings, 9(8), 506.

Goyeneche, R., Agüero, M. V., Roura, S., & Di Scala, K. (2014). Application of citric acid and mild heat shock to minimally processed sliced radish: Color evaluation. Postharvest Biology and Technology, 93, 106–113.

Grumezescu, V., Socol, G., Grumezescu, A. M., Holban, A. M., Ficai, A., Truşcǎ, R., Bleotu, C., Balaure, P. C., Cristescu, R., & Chifiriuc, M. C. (2014). Functionalized antibiofilm thin coatings based on PLA–PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE. Applied Surface Science, 302, 262–267.

Hajji, S., Chaker, A., Jridi, M., Maalej, H., Jellouli, K., Boufi, S., & Nasri, M. (2016). Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environmental Science and Pollution Research International, 23(15), 15310–15320.

Han, J. H., & Floros, J. D. (1997). Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film & Sheeting, 13(4), 287–298.

Ioelovich, M. (2014). Crystallinity and Hydrophility of Chitin and Chitosan. Journal of Chemistry, 3, 7–14.

Kanatt, S. R., Rao, M. S., Chawla, S. P., & Sharma, A. (2012). Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocolloids, 29(2), 290–297.

Kurita, K. (2001). Controlled functionalization of the polysaccharide chitin. Progress in Polymer Science, 26(9), 1921–1971.

Kurt, A., & Kahyaoglu, T. (2014). Characterization of a new biodegradable edible film made from salep glucomannan. Carbohydrate Polymers, 104, 50–58.

Lima, J. R., Garruti, D. D. S., Bruno, L. M., Araújo, Í. M. da S., Nobre, A. C. O., & Garcia, L. G. S. (2017). Replacement of peanut by residue from the cashew nut kernel oil extraction to produce a type paçoca candy: Cashew kernel oil extraction residue. Journal of Food Processing and Preservation, 41(2), e12775.

Loesdau, M., Chabrier, S., & Gabillon, A. (2014). Hue and saturation in the RGB color space. In Lecture Notes in Computer Science (pp. 203–212). Springer International Publishing.

Mohammadi, R., Mohammadifar, M. A., Rouhi, M., Kariminejad, M., Mortazavian, A. M., Sadeghi, E., & Hasanvand, S. (2018). Physico-mechanical and structural properties of eggshell membrane gelatin- chitosan blend edible films. International Journal of Biological Macromolecules, 107(Pt A), 406–412.

Oliveira, V. R. L., Monteiro, M. K. S., Santos, F. K. G., Leite, R. H. L., & Aroucha, E. M. M. (2018). Effect of drying temperature in biopolymeric films of cassava starch and its effect on wettability, water vapor barrier and mechanical properties. Materials Science Forum, 930, 270–275.

Sies, H., & Stahl, W. (2003). Non-nutritive bioactive constituents of plants: lycopene, lutein and zeaxanthin. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- Und Ernahrungsforschung. Journal International de Vitaminologie et de Nutrition, 73(2), 95–100.

Silva, P. L., Gomes, A. M. M., Ricardo, N. M. P. S., & Machado, T. F. (2016). Preparation and characterization of phosphorylated starch blends with chitosan and polyvinyl alcohol. Quimica Nova.

Tessaro, L., Luciano, C. G., Bittante, A. M. Q. B., Lourenço, R. V., Martelli-Tosi, M., & Sobral, P. J. A. (2021). Gelatin and/or chitosan-based films activated with “Pitanga” (Eugenia uniflora L.) leaf hydroethanolic extract encapsulated in double emulsion. Food Hydrocolloids, 113.

Tomé, A. C. (2017). Biodegradable Films of Proteins of Milk Serum with pH 6.7 as Biscuit Packaging. Colloquium Agrariae, 213–221.

Wang, Z., Tang, L., Lin, F., Shen, Y., Chen, Y., Chen, X., … Lu, B. (2020). Multi-Functional Edible Film with Excellent UV Barrier Performance and Accurate Instant Ion Printing Capability. Advanced Sustainable Systems, 4(7).

Wang, Z. C., Qin, C. Q., Zhang, X., Wang, Q., Li, R. X., & Ren, D. F. (2021). Effect of whey protein isolate/chitosan/microcrystalline cellulose/PET multilayer bottles on the shelf life of rosebud beverages. Food Chemistry, 347.

Wikström, F., Williams, H., Trischler, J., & Rowe, Z. (2019). The importance of packaging functions for food waste of different products in households. Sustainability, 11(9), 2641.

Zhang, Y., & Han, J. H. (2006). Plasticization of pea starch films with monosaccharides and polyols. Journal of Food Science, 71(6), E253–E261.

Zheng, K., Xiao, S., Li, W., Wang, W., Chen, H., Yang, F., & Qin, C. (2019). Chitosan-acorn starch-eugenol edible film: Physico-chemical, barrier, antimicrobial, antioxidant and structural properties. International Journal of Biological Macromolecules, 135, 344–352.

Published

27/12/2022

How to Cite

RODRIGUES, J. R. P. .; MIRANDA, K. W. E. .; OLIVEIRA NETO, S. I. de .; GALVÃO, A. M. M. T. .; ARAÚJO, A. W. de O. .; SOUZA, T. M. de .; CHINELATE, G. C. B. . The agroindustrial residue of whey as an eco-friendly solvent in the elaboration of biopolymeric hydrocolloidal film: the study of the optical properties. Research, Society and Development, [S. l.], v. 11, n. 17, p. e254111739189, 2022. DOI: 10.33448/rsd-v11i17.39189. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/39189. Acesso em: 7 may. 2024.

Issue

Section

Engineerings