Bioactive compounds present in kale (Brassica oleracea L.) at three stages of development and comparison of their antioxidant capacities

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4242

Keywords:

Antioxidant activity; Carotenoids; Microgreens.

Abstract

Young vegetables are gaining more and more popularity on a world scale, not only because they are highly nutritious foods, but because they constitute a new ingredient, being used to improve the visual aspect of salads and other garnishes and to embellish a wide variety of dishes. This study aimed to compare the content of bioactive compounds and the antioxidant capacity of kale (Brassica oleracea L.) in three growth stages: microgreen (15 days after sowing), baby leaf (40 days after sowing) and adult (60 days after sowing). The cultivation was carried out in trays for the production of microgreens, later a portion was transplanted in beds to obtain baby leafs and plants in an adult stage. The analyzes performed were: total carotenoids, mineral profile, phenolic compounds and antioxidant capacity. Chemical analyzes showed, in general, that vegetables in microgreens and baby leaf stages had higher levels of micronutrients and antioxidant capacity by the phosphomolybdenum method than the plant in the adult (commercial) stage, however, for phenolic compounds and total carotenoids, the adult plant had higher levels than baby leaf and microgreens. It should be noted that baby leaf and microgreens are usually eaten raw and whole, avoiding losses and obtaining a better use of nutrients present in these vegetables. Thus, the consumption of vegetables harvested at early stages may contribute to a greater supply of nutrients and bioactive compounds in the diet.

References

Almeida, MMB et al. (2002). Determinação de nutrientes minerais em plantas medicinais. Ciência e Tecnologia de Alimentos, 22(1), 94-97.

Angelo, PM & Jorge, N. (2007). Compostos fenólicos em alimentos-uma breve revisão. Revista do Instituto Adolfo Lutz (Impresso), 66(1), 01-09.

Araujo, MC et al. (2013). Consumo de macronutrientes e ingestão inadequada de micro-nutrientes em adultos. Revista Saúde Pública, São Paulo, 47(1), 177-89.

Batista, AM, Silva, EM & Silva, EIG. (2016). Consumo alimentar de magnésio, potássio e fósforo por adolescentes de uma escola pública. Saúde e Pesquisa, 9(1), 73-82.

Barros, JSG, Gomes, ECS & Cavalcanti, LS. (2015). Efeito de extratos de Allamanda blanchetti no controle de Alternaria brassicola em mudas de couve manteiga. Revista Caatinga, 28, 36-46.

Burton, BT. (1979). Nutrição Humana. Mc Graw-Hill do Brasil, São Paulo.

Costa, T & Jorge, N. (2011). Compostos Bioativos Benéficos Presentes em Castanhas e Nozes. Ciência Biológica e da Saúde, 13 (3), 195–203.

Choe, U, Yu, L & Wang, TTY. (2018). The Science Behind Microgreens As An Exciting New Food For The 21th Century. Journal of Agricultural and Food Chemistry, 66, 11519-11530.

Degáspari, CH, Waszczynskyj, N. (2004). Propriedades antioxidantes de compostos fenólicos. Visão acadêmica, 5(1), 33-40.

Di Gioia, F & Santamaria, P. (2015). Microgreens - Novel fresh and functional food to explore all the value of biodiversity. Bari: ECO-logica srl. 50p.

Epler, KS, Ziegler, RG, & Craft, NE. (1993). Liquid chromatographic method for the determination of carotenoids, retinoids and tocopherols in human serum and in food. Journal of Chromatography B: Biomedical Sciences and Applications, 619(1), 37-48.

Filgueira, FAR. (2003). Novo manual de olericultura: agrotecnologia moderna na produção e comercialização de hortaliças. 2. ed. Viçosa: UFV, 274- 294.

Franco, F. (1998). Tabela de Composição de Alimentos. 9ª ed., Atheneu, São Paulo.

Hammer, O. (1999-2012). Paleontological Statistics. Version 2.16.

Harper, HA, Rodwelf, VW & Mayes, RA. (1982). Manual de Química Fisiológica. 5a ed. Atheneu, São Paulo.

Larrauri, JA, Rupérez, P & Saura-Calixto, F. (1997). Effect of drying temperature on the stabilitity of polyphenols and antioxidant activity of red grape pomace peels. Journal of Agricultural and Food Chemistry, 45(4), 1390-1393.

Lefsrud M et al. (2007). Chances in kale (Brassica oleracea L. var. acephala) carotenoid and chlorophyll pigment concentrations during leaf ontogeny. Scientia Horticultura. 112, 136-141.

Litz, FH. (2013). Biodisponibilização do fósforo, incremento de energia e digestibilidade de nutrientes na dieta de frangos de corte contendo exoenzima fitase. 2013. 51f. Dissertação (Mestrado em Ciências Veterinárias) – Faculdade de Medicina Veterinária -UFU, Uberlândia, 2013.

Malavolta, E, Vitti, GC, DE Oliveira, SA. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações. 2. ed., Piracicaba: POTAFOS, 319p.

Miot, HA. (2017). Avaliação da normalidade dos dados em ensaios clínicos e experimentais. Jornal Vascular Brasileiro, 16(2), 88-91.

Nasem - National academies of sciences, engineering, and medicine. (2019). Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Elements. Washington, DC: The National Academies Press.

Novo, MCSS et al. (2010). Desenvolvimento e produção de genótipos de couve manteiga. Horticultura Brasileira, 28(3), 321-325.

Peñarrieta, JM, et al. (2014). Compuestos fenólicos y su presencia en alimentos. Revista Boliviana de Química, 31(2), 68-81.

Pereira, F, et al. (2015). Perfil Antioxidante de um Suco Misto (Couve (Brassica oleracea L.), Inhame (Dioscorea Spp.) e Laranja (Citrus sinensis). Anais Simpac, 7(1), 143-148.

Pereira, AS et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Acesso em: 17 maio 2020. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Purcherio, LFV et al. (2018). Bioeconomics: Promoting urban horticulture in the 21st century (Bioeconomia: Promoção da horticultura urbana do século XXI). Boletim Técnico-Informativo do Instituto Agronômico, 70(1): 6-19 - Série Técnica APTA - ISSN 036.

Rodriguez-Amaya, DB. (1993). Nature and distribuition of carotenoids in foods. Developments in food Science. 33, 574-589.

Rodriguez-Amaya. DB. (2001). A guide to carotenoid analysis in foods. Washington: Internacional Life Sciences Institute Press.

Rodriguez-Amaya, DB. (2014). Avanços na pesquisa de carotenóides em alimentos: contribuições de um laboratório brasileiro. Revista do Instituto Adolfo Lutz, 63(2), 129-138.

Renna, M, et al. (2016). Culinary Assessment of Self-Produced Microgreens as Basic Ingredients in Sweet and Savory Dishes. Journal of culinary science & technology, 15(2), 126-142.

Rufino, M do SM (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002.DOI: 10.1016/j.foodchem.2010.01.037

Senevirathne, GI, Gama-Arachchige, NS & Karunaratne, AM. (2019). Germination, harvesting stage, antioxidant activity and consumer acceptance of ten microgreens. Ceylon Journal of Science, 48(1), 91-96.

Severo, JS et al. (2015). Aspectos Metabólicos e Nutricionais do Magnésio. Nutr. Clín. Diet. Hosp., Madrid, 35(2), 67-74.

Sharma, P. (2012). Phenolic contents, antioxidant and α-glucosidase inhibition properties of Nepalese strain buckwheat vegetables, Afr. J. Biotechnol. 11, 184-190.

Steiner, F, Sabedot, MA, Lemos, JM. (2009). Efeito do composto orgânico sobre a produção e acúmulo de nutrientes nas folhas de couve manteiga. Revista Brasileira de Agroecologia, 4 (2), 1886-1890.

SToleru, T, Ioniță, A & Zamfirache, MM. (2016). Microgreens- A new food product with great expectations. Romanian journal of biology. 61 (1-2), 7-16.

Treadwell, DD et al. (2010). Microgreens: A New Specialty Crop. Extensão IFAS da Universidade da Flórida HS1164, 3, 1-3.

UE- UNIÃO EUROPÉIA. (2013). Commission Implementing Regulation (EU) nº208/2013 de 11 de Março de 2013 em Requisitos de rastreabilidade de brotos e sementes destinados à produção de brotos.

Xiao, Z et al. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. J. Agric. Food Chem., 60, 7644-7651.

Xiao, Z. (2013) Nutrition, sensory, quality and safety evaluation of a new specialty produce: microgreens. Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Xiao, Z et al. (2019). Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT, 101, 731-737.

Wang, X et al. (2014). Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. The BMJ; 349:g4490, 1-14.

Waterhouse, AL (2002). Polyphenolics: Determination of total phenolics. In R. E. Wrolstad (Ed.), Current Protocols in Food Analytical Chemistry. New York: John Wiley & Sons.

Yahia, EM, García-Solís, P, Celis, MEM. (2019). Chapter 2 - Contribution of Fruits and Vegetables to Human Nutrition and Health. Postharvest Physiology and Biochemistry of Fruits and Vegetables, Woodhead Publishing:Reino Unido, pg. 19-45.

Published

19/05/2020

How to Cite

ZANZINI, A. P.; OLIVEIRA, J. A. de C.; COUTINHO, G. S. M.; ARAÚJO, A. B. S.; BARROS, H. E. A. de; ABREU, D. J. M. de; VILAS BOAS, E. V. de B.; CARVALHO, E. E. N. Bioactive compounds present in kale (Brassica oleracea L.) at three stages of development and comparison of their antioxidant capacities. Research, Society and Development, [S. l.], v. 9, n. 7, p. e391974242, 2020. DOI: 10.33448/rsd-v9i7.4242. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/4242. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences