Bacterial resistance: A narrative review on Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa

Authors

DOI:

https://doi.org/10.33448/rsd-v12i11.43640

Keywords:

Bacterial resistance; Staphylococcus aureus; Klebsiella pneumoniae; Pseudomonas aeruginosa.

Abstract

The aim of this article is to present a narrative review of the bacteria Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa, addressing their resistance mechanisms, peculiarities and characteristics. Bacterial resistance has become a public health issue of worldwide relevance. Due to the misuse of antibiotics or even their prolonged use, many species of bacteria have become increasingly resistant to antimicrobial agents. The nosocomial environment, especially intensive care units, where patients undergoing treatment use antibiotics for prolonged periods of time, is the environment in which the emergence of these bacteria is most commonly detected, including Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. Many actions have been taken by the governments of various countries, the pharmaceutical industry, international organizations and researchers, both to raise awareness about the correct use of antimicrobials and in the search for new molecules to combat these pathogens. Given the relevance of the subject, this study will present a narrative review of the mechanisms of resistance of the bacteria S. aureus, K. pneumoniae and P. aeruginosa, strains that are highly resistant to available antimicrobials, in an attempt to understand the role of these pathogens.

References

Abushaheen, M. A., Muzaheed, Fatani, A. J., Alosaimi, M., Mansy, W., George, M., Acharya, S., Rathod, S., Divakar, D. D., Jhugroo, C., Vellappally, S., Khan, A. A., Shaik, J., & Jhugroo, P. (2020). Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month: DM, 66(6), 100971. https://doi.org/10.1016/j.disamonth.2020.100971

Ahmad-Mansour, N., Loubet, P., Pouget, C., Dunyach-Remy, C., Sotto, A., Lavigne, J.-P., & Molle, V. (2021). Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins, 13(10), 677. https://doi.org/10.3390/toxins13100677

Brabb, T., Newsome, D., Burich, A., & Hanes, M. (2012). Infectious Diseases. In The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents (pp. 637–683). Elsevier.

Brindhadevi, K., LewisOscar, F., Mylonakis, E., Shanmugam, S., Verma, T. N., & Pugazhendhi, A. (2020). Biofilm and Quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochemistry (Barking, London, England), 96, 49–57. https://doi.org/10.1016/j.procbio.2020.06.001

Butrico, C. E., & Cassat, J. E. (2020). Quorum sensing and toxin production in staphylococcus aureus osteomyelitis: Pathogenesis and paradox. Toxins, 12(8), 516. https://doi.org/10.3390/toxins12080516

C Reygaert, W., & Department of Biomedical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, USA. (2018). An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology, 4(3), 482–501. https://doi.org/10.3934/microbiol.2018.3.482

Chadha, J., Harjai, K., & Chhibber, S. (2022). Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environmental Microbiology, 24(6), 2630–2656. https://doi.org/10.1111/1462-2920.15784

Chang, J., Lee, R.-E., & Lee, W. (2020). A pursuit of Staphylococcus aureus continues: a role of persister cells. Archives of Pharmacal Research, 43(6), 630–638. https://doi.org/10.1007/s12272-020-01246-x

Edwardson, S., & Cairns, C. (2019). Nosocomial infections in the ICU. Anaesthesia & Intensive Care Medicine, 20(1), 14–18. https://doi.org/10.1016/j.mpaic.2018.11.004

Founou, R. C., Founou, L. L., & Essack, S. Y. (2017). Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PloS One, 12(12), e0189621. https://doi.org/10.1371/journal.pone.0189621

Guerra, M. E. S., Destro, G., Vieira, B., Lima, A. S., Ferraz, L. F. C., Hakansson, A. P., Darrieux, M., & Converso, T. R. (2022). Klebsiella pneumoniae Biofilms and Their Role in Disease Pathogenesis. Frontiers in Cellular and Infection Microbiology, 12. https://doi.org/10.3389/fcimb.2022.877995

Guimarães, D. O., Momesso, L. da S., & Pupo, M. T. (2010). Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Quimica Nova, 33(3), 667–679. https://doi.org/10.1590/s0100-40422010000300035

Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00107

Howden, B. P., Giulieri, S. G., Wong Fok Lung, T., Baines, S. L., Sharkey, L. K., Lee, J. Y. H., Hachani, A., Monk, I. R., & Stinear, T. P. (2023). Staphylococcus aureus host interactions and adaptation. Nature Reviews. Microbiology, 21(6), 380–395. https://doi.org/10.1038/s41579-023-00852-y

Huemer, M., Mairpady Shambat, S., Brugger, S. D., & Zinkernagel, A. S. (2020). Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Reports, 21(12). https://doi.org/10.15252/embr.202051034

Idrees, M., Sawant, S., Karodia, N., & Rahman, A. (2021). Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies. International Journal of Environmental Research and Public Health, 18(14), 7602. https://doi.org/10.3390/ijerph18147602

Iglewski, B. H. (1996). Pseudomonas. University of Texas Medical Branch at Galveston.

Jindal, A. K., Pandya, K., & Khan, I. D. (2015). Antimicrobial resistance: A public health challenge. Medical Journal, Armed Forces India, 71(2), 178–181. https://doi.org/10.1016/j.mjafi.2014.04.011

Jurado-Martín, I., Sainz-Mejías, M., & McClean, S. (2021). Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. International Journal of Molecular Sciences, 22(6), 3128. https://doi.org/10.3390/ijms22063128

Kakoullis, L., Papachristodoulou, E., Chra, P., & Panos, G. (2021). Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics (Basel, Switzerland), 10(4), 415. https://doi.org/10.3390/antibiotics10040415

Lam, M. M. C., Wick, R. R., Watts, S. C., Cerdeira, L. T., Wyres, K. L., & Holt, K. E. (2021). A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nature Communications, 12(1). https://doi.org/10.1038/s41467-021-24448-3

Lamut, A., Peterlin Mašič, L., Kikelj, D., & Tomašič, T. (2019). Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Medicinal Research Reviews, 39(6), 2460–2504. https://doi.org/10.1002/med.21591

Martin, R. M., & Bachman, M. A. (2018). Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Frontiers in Cellular and Infection Microbiology, 8. https://doi.org/10.3389/fcimb.2018.00004

Miethke, M., Pieroni, M., Weber, T., Brönstrup, M., Hammann, P., Halby, L., Arimondo, P. B., Glaser, P., Aigle, B., Bode, H. B., Moreira, R., Li, Y., Luzhetskyy, A., Medema, M. H., Pernodet, J.-L., Stadler, M., Tormo, J. R., Genilloud, O., Truman, A. W., & Müller, R. (2021). Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry, 5(10), 726–749. https://doi.org/10.1038/s41570-021-00313-1

Nishino, K., Yamasaki, S., Nakashima, R., Zwama, M., & Hayashi-Nishino, M. (2021). Function and inhibitory mechanisms of multidrug efflux pumps. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.737288

No time to Wait: Securing the future from drug-resistant infections. (2019). Who.int; World Health Organization. https://www.who.int/publications/i/item/no-time-to-wait-securing-the-future-from-drug-resistant-infections

Pachori, P., Gothalwal, R., & Gandhi, P. (2019). Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes & Diseases, 6(2), 109–119. https://doi.org/10.1016/j.gendis.2019.04.001

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica – 1ª Edição. Núcleo de Tecnologia Educacional-Universidade Federal de Santa Maria-ISBN 978-85-8341-204-5. https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1&isAllowed=y

Prodanov, C. C., & Freitas, E. C. (2013). Metodologia do trabalho científico: Métodos e Técnicas da Pesquisa e do Trabalho Acadêmico. Editora Feevale ISBN 978-85-7717-158-3. https://www.feevale.br/Comum/midias/0163c988-1f5d-496f-b118-a6e009a7a2f9/E-book%20Metodologia%20do%20Trabalho%20Cientifico.pdf

Reynolds, D., & Kollef, M. (2021). The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: An update. Drugs, 81(18), 2117–2131. https://doi.org/10.1007/s40265-021-01635-6

Rother, E. T. (2007). Revisão sistemática X revisão narrativa. Acta Paulista de Enfermagem, 20(2), v–vi. https://doi.org/10.1590/s0103-21002007000200001

Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., Eichenberger, E. M., Shah, P. P., Carugati, M., Holland, T. L., & Fowler, V. G., Jr. (2019). Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews. Microbiology, 17(4), 203–218. https://doi.org/10.1038/s41579-018-0147-4

Uruén, C., Chopo-Escuin, G., Tommassen, J., Mainar-Jaime, R. C., & Arenas, J. (2020). Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics (Basel, Switzerland), 10(1), 3. https://doi.org/10.3390/antibiotics10010003

van Duijkeren, E., Schink, A.-K., Roberts, M. C., Wang, Y., & Schwarz, S. (2018). Mechanisms of bacterial resistance to antimicrobial agents. Microbiology Spectrum, 6(2). https://doi.org/10.1128/microbiolspec.arba-0019-2017

Wang, G., Zhao, G., Chao, X., Xie, L., & Wang, H. (2020). The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. International Journal of Environmental Research and Public Health, 17(17), 6278. https://doi.org/10.3390/ijerph17176278

Wilson, D. N., Hauryliuk, V., Atkinson, G. C., & O’Neill, A. J. (2020). Target protection as a key antibiotic resistance mechanism. Nature Reviews. Microbiology, 18(11), 637–648. https://doi.org/10.1038/s41579-020-0386-z

Yang, S.-K., Yusoff, K., Thomas, W., Akseer, R., Alhosani, M. S., Abushelaibi, A., Lim, S.-H.-E., & Lai, K.-S. (2020). Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-019-55601-0

Zhang, F., & Cheng, W. (2022). The mechanism of bacterial resistance and potential bacteriostatic strategies. Antibiotics (Basel, Switzerland), 11(9), 1215. https://doi.org/10.3390/antibiotics11091215

Zhao, X., Yu, Z., & Ding, T. (2020). Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms, 8(3), 425. https://doi.org/10.3390/microorganisms8030425

Downloads

Published

22/10/2023

How to Cite

FARIA, T. M. R. .; SILVA, A. B. M. F. da .; MORAIS, A. L. F. .; OLIVEIRA, J. R. de . Bacterial resistance: A narrative review on Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. Research, Society and Development, [S. l.], v. 12, n. 11, p. e25121143640, 2023. DOI: 10.33448/rsd-v12i11.43640. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/43640. Acesso em: 15 may. 2024.

Issue

Section

Review Article