Vitamin D and infectious diseases in the COVID-19 pandemic outburst

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4614

Keywords:

SARS; Coronavirus; Treatment; H1N1; Influenza.

Abstract

The new coronavirus pandemic disease (COVID-19) pandemic was first reported in Wuhan, China, in late 2019, and rapidly spread around the world. Considering its fast transmission rate, the new COVID-19 has become a threat to the public health worldwide. Thus, objective ideas based on scientific evidences must be proposed for the treatment of patients infected. Vitamin D is a hormone with important role in the regulation of the immune system functioning. The main sources of Vitamin D are food intake and synthesis process in the organism which starts in the skin through photoreaction with sun exposure. Then, the pre-Vitamin D is isomerized into pro-Vitamin D. Afterwards, it is metabolized in the liver into 25-hydroxivitamin D, and then converted into in the kidney into its active form, the 1.25-dihydroxivitamin D. Due to its pivotal role in the improvement of the immune response, Vitamin D can positively affect the treatment of several infecto-contagious diseases, such as influenza and H1N1.  This concise review aims to inform about the use of Vitamin D as a possible ally in the treatment of COVID-19. The studies included in this review point out that Vitamin D can perform immunomodulatory and anti-inflammatory functions, which would significantly improve the treatment of viral infections.  Further clinical trials and large populational studies should be carried out in order to better elucidate the effective role of Vitamin D in the treatment of patients with COVID-19.

References

Agier, J., Efenberger, M., & Brzezińska-Błaszczyk, E. (2015). Review paper cathelicidin impact on inflammatory cells. Central European Journal of Immunology, 2, 225–235. https://doi.org/10.5114/ceji.2015.51359

Alipio, M. (2020). Vitamin D supplementation could possibly improve clinical outcomes of patients infected with coronavirus-2019 (COVID-2019). SSRN Electronic Journal, 1–9. https://doi.org/10.2139/ssrn.3571484

Barlow, P. G., Svoboda, P., Mackellar, A., Nash, A. A., York, I. A., Pohl, J., … Donis, R. O. (2011). Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS ONE, 6(10), e25333. https://doi.org/10.1371/journal.pone.0025333

Bikle, D. D., Malmstroem, S., & Schwartz, J. (2017). Current controversies: are free vitamin metabolite levels a more accurate assessment of Vitamin D status than total levels? Endocrinology and Metabolism Clinics of North America, 46(4), 901–918. https://doi.org/10.1016/j.ecl.2017.07.013

Bikle, D. D., Patzek, S., & Wang, Y. (2018). Physiologic and pathophysiologic roles of extra renal CYP27b1: Case report and review. Bone Reports, 8, 255–267. https://doi.org/10.1016/j.bonr.2018.02.004

Borella, E., Nesher, G., Israeli, E., & Shoenfeld, Y. (2014). Vitamin D: a new anti‐infective agent? Annals of the New York Academy of Sciences, 1317(1), 76–83. https://doi.org/doi: 10.1111/nyas.12321

Carlberg, C. (2017). Molecular endocrinology of vitamin D on the epigenome level. Molecular and Cellular Endocrinology, 453, 14–21. https://doi.org/10.1016/j.mce.2017.03.016

Castranova, V., Asgharian, B., Sayre, P., Virginia, W., & Carolina, N. (2014). Metabolic Regulation of Immune Responses Kirthana. Annu Rev Immunol, 32(1), 609–634. https://doi.org/10.1080/10937404.2015.1051611.INHALATION

Chen, S., Sims, G. P., Chen, X. X., Gu, Y. Y., Chen, S., & Lipsky, P. E. (2007). Modulatory Effects of 1,25-Dihydroxyvitamin D3 on Human B Cell Differentiation. The Journal of Immunology, 179(3), 1634–1647. https://doi.org/10.4049/jimmunol.179.3.1634

Chiang, C. M., Ismaeel, A., Griffis, R. B., & Weems, S. (2016). Effects of vitamin D supplementation on muscle strength in athletes: A systematic review. Journal of Strength and Conditioning Research, 31(2), 566–574.

Christakos, S., Dhawan, P., Verstuyf, A., Verlinden, L., & Carmeliet, G. (2016). Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiological Reviews, 96(1), 365–408. https://doi.org/10.1152/physrev.00014.2015

Colunga Biancatelli, R. M. L., Berrill, M., & Marik, P. E. (2019). The antiviral properties of vitamin C. Expert Review of Anti-Infective Therapy, 18(2), 99–101. https://doi.org/10.1080/14787210.2020.1706483

Czaja, A. J., & Montano-Loza, A. J. (2018). Evolving role of Vitamin D in immune-mediated disease and its implications in autoimmune hepatitis. Digestive Diseases and Sciences, 64(2), 324–344. https://doi.org/10.1007/s10620-018-5351-6

Fisher, S. A., Rahimzadeh, M., Brierley, C., Gration, B., Doree, C., Kimber, C. E., … Roberts, D. J. (2019). The role of vitamin D in increasing circulating T regulatory cell numbers and modulating T regulatory cell phenotypes in patients with inflammatory disease or in healthy volunteers: A systematic review. PLOS ONE, 14(9), e0222313. https://doi.org/10.1371/journal.pone.0222313

Gombart, A. F., Pierre, A., & Maggini, S. (2020). A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients, 12(1), 236. https://doi.org/10.3390/nu12010236

Grant, W. B., Lahore, H., McDonnell, S. L., Baggerly, C. A., French, C. B., Aliano, J. L., & Bhattoa, H. P. (2020a). Evidence that Vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 12(4), E988. https://doi.org/10.20944/preprints202003.0235.v2

Grant, W. B., Lahore, H., McDonnell, S. L., Baggerly, C. A., French, C. B., Aliano, J. L., & Bhattoa, H. P. (2020b). Vitamin D supplementation could prevent and treat influenza, coronavirus, and pneumonia infections. Nutrients, 12(988). https://doi.org/10.20944/preprints202003.0235.v1

Gröber, U., & Kisters, K. (2012). Influence of drugs on vitamin D and calcium metabolism. Dermato-Endocrinology, 4(2), 158–166. https://doi.org/10.4161/derm.20731

Gruber–Bzura, B. M. (2018). Vitamin D and influenza — prevention or therapy? International Journal of Molecular Sciences, 19(8), 2419. https://doi.org/10.3390/ijms19082419

Guillot, X., Semerano, L., Saidenberg-Kermanac’h, N., Falgarone, G., & Boissier, M.-C. (2010). Vitamin D and inflammation. Joint Bone Spine, 77(6), 552–557. https://doi.org/10.1016/j.jbspin.2010.09.018

Haroon, M., & FitzGerald, O. (2011). Vitamin D and its emerging role in immunopathology. Clinical Rheumatology, 31(2), 199–202. https://doi.org/10.1007/s10067-011-1880-5

Haussler, M. R., Jurutka, P. W., Mizwicki, M., & Norman, A. W. (2011). Vitamin D receptor (VDR) - mediated actions of 1α,25(OH) 2vitamin D3: Genomic and non-genomic mechanisms. Best Practice & Research Clinical Endocrinology & Metabolism, 25(4), 543–559. https://doi.org/10.1016/j.beem.2011.05.010

Haussler, M. R., Whitfield, G. K., Kaneko, I., Haussler, C. A., Hsieh, D., Hsieh, J.-C., & Jurutka, P. W. (2012). Molecular mechanisms of vitamin D action. Calcified Tissue International, 92(2), 77–98. https://doi.org/10.1007/s00223-012-9619-0

Holick, M. F. (1995). Vitamin D: Photobiology, metabolism, and clinical applications. In De Groot LC, ed. Endocrinology (7th ed., pp. 990–1011). Philadelphia: Elsevier.

Hornsby, E., Pfeffer, P. E., Laranjo, N., Cruikshank, W., Tuzova, M., Litonjua, A. A., … Hawrylowicz, C. (2018). Vitamin D supplementation during pregnancy: Effect on the neonatal immune system in a randomized controlled trial. Journal of Allergy and Clinical Immunology, 141(1), 269-278.e1. https://doi.org/10.1016/j.jaci.2017.02.039

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/s0140-6736(20)30183-5

Katona, P., & Katona‐Apte, J. (2008). The interaction between nutrition and infection. Clinical Infectious Diseases, 46(10), 1582–1588. https://doi.org/10.1086/587658

Kimball, A., Hatfield, K. M., Arons, M., James, A., Taylor, J., Spicer, K., … Jernigan, J. A. (2020). Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility - King County, Washington, March 2020. MMWR. Morbidity and Mortality Weekly Report, 69(13), 377–381. https://doi.org/10.15585/mmwr.mm6913e1

Lei, G. S., Zhang, C., Cheng, B.-H., & Lee, C.-H. (2017). Mechanisms of action of vitamin D as supplemental therapy for pneumocystis pneumonia. Antimicrobial Agents and Chemotherapy, 61(10). https://doi.org/10.1128/aac.01226-17

Lin, R. (2016). Crosstalk between Vitamin D metabolism, VDR signalling, and innate immunity. BioMed Research International, 2016, 1–5. https://doi.org/10.1155/2016/1375858

MacLaughlin, J., & Holick, M. F. (1985). Aging decreases the capacity of human skin to produce vitamin D3. Journal of Clinical Investigation, 76(4), 1536–1538. https://doi.org/10.1172/jci112134

Martínez-Moreno, J., Hernandez, J. C., & Urcuqui-Inchima, S. (2019). Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells. Molecular and Cellular Biochemistry, 464(1–2), 169–180. https://doi.org/10.1007/s11010-019-03658-w

Mazon, L. M., Komuchena, K. S., Roik, A. K., Wieczorkievicz, A. M., & Ditterich, R. G. (2016). Perfil epidemiológico de pacientes com síndrome gripal e síndrome respiratória aguda grave. Saúde Em Revista, 16(43), 37–44. https://doi.org/10.15600/2238-1244/sr.v16n43p37-44

McCartney, D. M., & Byrne, D. G. (2020). Optimisation of vitamin D status for enhanced immuno-protection against COVID-19. Ir Med J., 113(4), 58.

McKenna, N. J., Cooney, A. J., DeMayo, F. J., Downes, M., Glass, C. K., Lanz, R. B., … O’Malley, B. W. (2009). Minireview: evolution of NURSA, the nuclear receptor signaling atlas. Molecular Endocrinology, 23(6), 740–746. https://doi.org/10.1210/me.2009-0135

Mousavi, S., Bereswill, S., & Heimesaat, M. M. (2019). Immunomodulatory and antimicrobial effects of vitamin C. European Journal of Microbiology and Immunology, 9(3), 73–79. https://doi.org/10.1556/1886.2019.00016

Neumann, G., & Kawaoka, Y. (2015). Transmission of Infleunza A viruses. Virology, (480), 234–246. https://doi.org/10.1016/j.virol.2015.03.009.Transmission

Oda, Y., Sihlbom, C., Chalkley, R. J., Huang, L., Rachez, C., Chang, C.-P. B., … Bikle, D. D. (2003). Two distinct coactivators, DRIP/mediator and SRC/p160, are differentially involved in Vitamin D receptor transactivation during keratinocyte differentiation. Molecular Endocrinology, 17(11), 2329–2339. https://doi.org/10.1210/me.2003-0063

Oliveira, A., Sofia Vilela, S., Warkentin, S., Araújo, J., Ramos, E., & Lopes, C. (2020). Da emergência de um novo vírus humano à disseminação global de uma nova doença. ISPUP.

Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., … Qian, Z. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11(1), 1620. https://doi.org/10.1038/s41467-020-15562-9

Prosser, D. E., & Jones, G. (2004). Enzymes involved in the activation and inactivation of vitamin D. Trends in Biochemical Sciences, 29(12), 664–673. https://doi.org/10.1016/j.tibs.2004.10.005

Rokni, M., Ghasemi, V., & Tavakoli, Z. (2020). Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Reviews in Medical Virology, 1–6. https://doi.org/10.1002/rmv.2107

Rondanelli, M., Miccono, A., Lamburghini, S., Avanzato, I., Riva, A., Allegrini, P., … Perna, S. (2018). Self-care for common colds: the pivotal role of Vitamin D, Vitamin C, zinc, and echinacea in three main immune interactive clusters (physical barriers, innate and adaptive immunity) involved during an episode of common colds — practical advice on dosages . Evidence-Based Complementary and Alternative Medicine, 2018, 1–36. https://doi.org/10.1155/2018/5813095

Sakaki, T., Sawada, N., Komai, K., Shiozawa, S., Yamada, S., Yamamoto, K., … Inouye, K. (2000). Dual metabolic pathway of 25-hydroxyvitamin D3 catalyzed by human CYP24. European Journal of Biochemistry, 267(20), 6158–6165. https://doi.org/10.1046/j.1432-1327.2000.01680.x

Schwalfenberg, G. K. (2010). A review of the critical role of vitamin D in the functioning of the immune system and the clinical implications of vitamin D deficiency. Molecular Nutrition & Food Research, 55(1), 96–108. https://doi.org/10.1002/mnfr.201000174

Schwartz, J. B., Gallagher, J. C., & Jorde, R. (2018). Determination of free 25 (OH) D concentrations and their relationships to total 25 (OH) D in multiple clinical populations. J Clin Endocrinol Metab, 103(9), 3278–3288.

Scully, C., Georgakopoulou, E. A., & Hassona, Y. (2017). The immune system: Basis of so much health and disease: 4. immunocytes. Dental Update, 44(5), 436–442. https://doi.org/10.12968/denu.2017.44.5.436

Sharifi, A., Vahedi, H., Nedjat, S., Rafiei, H., & Hosseinzadeh‐Attar, M. J. (2019). Effect of single‐dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebo‐controlled trial. APMIS, 127(10), 681–687. https://doi.org/10.1111/apm.12982

Sociedade Brasileira de Pediatria. (2014). Deficiência de vitamina D em crianças a adolescentes. Sociedade Brasileira de Pediatria, 99(1), 1132–1141.

Taubenberger, J. K., & Morens, D. M. (2008). The pathology of influenza virus infections. Annu Rev Pathol, 3(1), 499–522.

Teymoori-Rad, M., Shokri, F., Salimi, V., & Marashi, S. M. (2019). The interplay between vitamin D and viral infections. Reviews in Medical Virology, 29(2), e2032. https://doi.org/10.1002/rmv.2032

Trochoutsou, A. I., Kloukina, V., Samitas, K., & Xanthou, G. (2015). Vitamin-D in the immune system: genomic and non-genomic actions. Mini-Reviews in Medicinal Chemistry, 15(11). https://doi.org/10.2174/1389557515666150519110830

Vásárhelyi, B., Sátori, A., Olajos, F., Szabó, A., & Bekő, G. (2011). Low vitamin D levels among patients at Semmelweis University: retrospective analysis during a one-year period. Orvosi Hetilap, 152(32), 1272–1277. https://doi.org/10.1556/oh.2011.29187

Whitfield, G. K. (1996). Vitamin D receptors from patients with resistance to 1,25- dihydroxyvitamin D3: point mutations confer reduced transactivation in response to ligand and impaired interaction with the retinoid X receptor heterodimeric partner. Molecular Endocrinology, 10(12), 1617–1631. https://doi.org/10.1210/me.10.12.1617

Wimalawansa, S. J. (2020). Global epidemic of coronavirus–COVID-19: What we can do to minimze risks. Eur J Biomed Pharm Sci, 7, 432–438.

Wintergerst, E. S., Maggini, S., & Hornig, D. H. (2007). Contribution of selected vitamins and trace elements to immune function. Annals of Nutrition and Metabolism, 51(4), 301–323. https://doi.org/10.1159/000107673

Wu, D., Lewis, E. D., Pae, M., & Meydani, S. N. (2019). Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.03160

Yan, C. H., Faraji, F., Prajapati, D. P., Boone, C. E., & DeConde, A. S. (2020). Association of chemosensory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. International Forum of Allergy & Rhinology, 1–18. https://doi.org/10.1002/alr.22579

Zhang, J., Xie, B., & Hashimoto, K. (2020). Current status of potential therapeutic candidates for the COVID-19 crisis. Brain, Behavior, and Immunity, S0889-1591(20)30589-4. https://doi.org/10.1016/j.bbi.2020.04.046

Zhao, Y., Ran, Z., Jiang, Q., Hu, N., Yu, B., Zhu, L., & Chen, D. (2019). Vitamin D alleviates rotavirus infection through a Microrna-155-5p mediated regulation of the TBK1/IRF3 signaling pathway in vivo and in vitro. International Journal of Molecular Sciences, 20(14), 3562. https://doi.org/10.3390/ijms20143562

Published

12/06/2020

How to Cite

SILVINO, V. O.; PEREIRA, M. M. L.; MOURA, R. C. de; BATISTA, M. C. C.; ROSA, B. V.; MOURA, E. H. de; MARTINS, M. do C. C. e; SANTOS, M. A. P. dos. Vitamin D and infectious diseases in the COVID-19 pandemic outburst. Research, Society and Development, [S. l.], v. 9, n. 7, p. e771974614, 2020. DOI: 10.33448/rsd-v9i7.4614. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/4614. Acesso em: 25 apr. 2024.

Issue

Section

Health Sciences