Evaluation of the retentive capacity of toxic metals from galvanoplasty industries using ceramic matrices

Authors

DOI:

https://doi.org/10.33448/rsd-v9i7.4616

Keywords:

Galvanic sludge; Ceramics; Leaching.

Abstract

The use of clays to remove toxic metals present in water bodies has been tested by countless researchers. However, there is a need to give this type of material a destination after its use as an adsorbent. An option for an efficient destination of this material would be the incorporation of them in the constitution of the clay mixtures constituting ceramics. The objective was to verify the ability to remove Cu (II) and Ni (II) metal ions from ceramic matrices. The ability to retain metal ions in the structures of ceramics and their mechanical properties after the incorporation of galvanic sludge and effluent contaminated with toxic metals were evaluated. Leaching studies were carried out on the ceramic pieces to assess the possible release of metal ions to the environment. The results presented for the mechanical aspects of the ceramic pieces showed that the incorporation of the galvanic sludge, as well as the liquid effluent, did not compromise the mechanical properties of resistance of the produced pieces. Regarding the aspects related to leaching, the results showed that under certain conditions nickel or copper will not be released. The experimental results showed that leaching in basic and acidic media, there was no release of metals in samples moistened with effluent, but there was a release of nickel in the concentration of 10% of the sample with galvanic sludge and the release of copper in concentrations 6%, 8%, 10% of the samples with galvanic sludge. In all tests, there was no release of the two ions in neutral medium.

References

ABNT. (1987). Associação Brasileira de Normas Técnicas. Lixiviação Resíduos: NBR 10.005. Brasil: ABNT.

ABNT. (1987). Associação Brasileira de Normas Técnicas. Placas Cerâmicas para Revestimento – Especificação e Métodos de Ensaio (descrição dos parâmetros dos ensaios):

NBR 13.818/ISO 10545. Brasil: ABNT.

ABNT. (1987). Associação Brasileira de Normas Técnicas. Resíduos Sólidos: NBR 10.004. Brasil: ABNT.

Associação Brasileira de Normas Técnicas. Solubilização Resíduos: NBR 10.006. Brasil: ABNT, 1987.

Caputo HP. (1996). Mecãnica dos Solos e Suas Aplicações (Fundamentos). Vol. 1, LTC - Livros Técnicos e Científicos Editora S.A.

Coelho ACV Santos P & Santos H. (2007). Argilas especiais: o que são, caracterização e propriedades. Química Nova, 30(1): 146-95.

Dawodu FA & Akpomie KG. (2014). Simultaneous adsorption of Ni (II) and Mn (II) ions from aqueous solution unto a Nigerian kaolinite clay. Journal of materials research and technology, 3(2): 129-41.

Gomes SCF. (2002). Argilas aplicações na indústria. O Liberal, Empresa de Artes Gráficas. Aveiro. 337 p.

Gomes SCF. (1998). As argilas: o que são e para que servem. Fundação Calouste Gulbenkian. Lisboa.

Liu C, Fiol N, Poch J & Villaescusa I. (2016). A new technology for the treatment of chromium electroplating wastewater based on biosorption. Journal of Water Process Engineering, 11(1): 143-51.

Laursen, A, Santana, LNL & Menezes, RR. (2019). Caracterização de argilas plásticas do Nordeste brasileiro. Cerâmica, 65(376): 578-84.

Maciel MGS. (2016). Adsorção de Íons de Metais Pesados, em Meio Aquuoso, Utilizando a montmorilonita. (Dissertação de Mestrado). Curso de Mestradoem Química do Programa de Pós-Graduação em Química da Universidade Federal de Roraima.

Moreno MMT, Roveri CD, Godoy LH & Zanardo A. (2016). Caracterização de argilas e composição de massas cerâmicas preparadas com base na análise de curvas de consistência de misturas argila-água. Cerâmica, 62(1): 21-31.

Oliveira Cotta JA & Castro Rodrigues M. (2020). Lead sortion study in weathered soils in its different fractions. Research, Society and Development, 9(4), 57942306.

Oliveira OMD, Crivelari RM, Munhóz Jr AH, Valenzuela Diaz MDG & Valenzuela Díaz FR. (2016). Estudo do comportamento dos índices de consistência de uma argila com a incorporação de resíduos de blocos cerâmicos queimados. Anais Cebcimat.

Pereira AS, Shitsuka DM, Parreira FJ & Shitsuka R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Acesso on: May, 23, 2020. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_ Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Tirtom VN, Dinçer A, Becerik S, Aydemir T & Çelik A. (2012). Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chemical Engineering Journal, 197(1): 379-86.

Santos GM. (2010). Estudo das variáveis de processamento das matérias primas da região do Crato-Ce na fabricação de produtos cerâmicos por extrusão e por prensagem. (Dissertação de Mestrado). Universidade Federal do Rio Grande do Norte.

Published

30/05/2020

How to Cite

RODRIGUES, M. de F. da S.; VELDHUIS, R.; GOMES, L. K. M.; MENEZES, J. M. C.; TEIXEIRA, R. N. P.; SILVA, J. H. da. Evaluation of the retentive capacity of toxic metals from galvanoplasty industries using ceramic matrices. Research, Society and Development, [S. l.], v. 9, n. 7, p. e679974616, 2020. DOI: 10.33448/rsd-v9i7.4616. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/4616. Acesso em: 19 apr. 2024.

Issue

Section

Exact and Earth Sciences