Drying Kinetics and Hygroscopic Balance of Rosemary Leaves

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.5401

Keywords:

Sorption isotherms; Medicinal plants; Mathematical modelling.

Abstract

The medicinal plants of genus Lippia is used worldwide for its medicinal characteristics. However, there is a need to study the drying kinetics and hygroscopic balance of Lippia gracilis leaves by varying the drying temperature. The objective of this work was to study the drying kinetics of Lippia gracilis as well as to adjust a model among those existing in the literature that best represents the behavior of the sorption isotherm. The rosemary leaves were processed and submitted to drying air temperatures of 40, 50, 60, and 70 ºC in a fixed layer mechanical dryer. For the study of the hygroscopic phenomenon, temperatures of 20, 30, 55, and 70 ºC were used with water activities between 0.11 and 0.81. The model that best represented the drying curves was the Midilli model with an R² of 99.60. The model that best represented the hygroscopic balance curve of Lippia gracilis was that of Sabbah with an R² of 93.33%.

References

Anaya-Castro, M. A., Ayala-Zavala, J. F., Muñoz-Castellanos, L., Hernández-Ochoa, L., Peydecastaing, J., & Durrieu, V. (2017). β-Cyclodextrin inclusion complexes containing clove (Eugenia caryophyllata) and Mexican oregano (Lippia berlandieri) essential oils: Preparation, physicochemical and antimicrobial characterization. Food Packaging and Shelf Life, 14(1), 96-101.

Andrade, E. T., Figueira, V. G., Teixeira, L. P., Taveira, J. H. D. S., & Borém, F. M. (2017). Determination of the hygroscopic equilibrium and isosteric heat of aji chili pepper. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(12), 865-71.

Andrade, E. T., Figueira, V. G., Teixeira, L. P., Martinazzo, A. P., & Araujo, K. G. D. L. (2019). Effect of drying kinetics on color of “dedo de moça” chili peppers (Capsicum baccatum). Engenharia Agrícola, 39(5), 659-667.

Avhad, M. R., & Marchetti, J. M. (2016). Mathematical modelling of the drying kinetics of Hass avocado seeds. Industrial Crops and Products, 91(1), 76-87.

Barbosa, C. K. R., de Souza, C. E., Fonseca, M. C. M., & Casali, V. W. D. (2017). Teor de óleo essencial e caracterização organoléptica de hortelã-pimenta após fragmentação e secagem. Magistra, 28(2), 279-84.

Barbosa, C. S., Pereira, R. F., & Fortuna, J. L. (2018). Atividade antifúngica do óleo essencial de erva-cidreira Lippia alba (Mill.) NE Brown (Verbenaceae) sobre Candida albicans. Revista Biociências, 23(1), 53-60.

Barbosa, F. D. F., Barbosa, L. C., Melo, E. C., Botelho, F. M., & Santos, R. H. (2006). Influência da temperatura do ar de secagem sobre o teor e a composição química do óleo essencial de Lippia alba (Mill) NE Brown. Química Nova, 29(6), 1221-5.

Botelho, F. M., Boschiroli Neto, N. J., Botelho, S. D. C., de Oliveira, G. H., & Hauth, M. R. (2019). Sorption isotherms of Brazil nuts. Revista Brasileira de Engenharia Agrícola e Ambiental, 23(10), 776-81.

Botelho, M. A., Barros, G., Queiroz, D. B., Carvalho, C. F., Gouvea, J., Patrus, L., & Campus, G. (2016). Nanotechnology in phytotherapy: antiinflammatory effect of a nanostructured thymol gel from Lippia sidoides in acute periodontitis in rats. Phytotherapy research, 30(1), 152-9.

Costa, R. A., Cavalcante, T. T. A., de Melo, C. T. V., Barroso, D. L. A. U., Melo, H. M., de Carvalho, M. A. G., & Júnior, F. E. A. C. (2018). Antioxidant and antibacterial activities of essential oil of Lippia sidoides against drug-resistant Staphylococcus aureus from food. African Journal of Biotechnology, 17(8), 232-8.

Dinçer, İ., & Zamfirescu, C. (2016). Drying phenomena: theory and applications. West Sussex: John Wiley & Sons.

Ferreira Junior, W. N., Resende, O., de Oliveira, D. E., & Costa, L. M. (2018). Isotherms and isosteric heat desorption of Hymenaea stigonocarpa Mart. seeds. Journal of Agricultural Science, 10(10), 504-12.

Gomes, N. H. F., Neto, H. C. D. S., Alves, J. J. L., Rodovalho, R. S., & Sousa, C. M. (2017). Cinética de secagem de folhas de Cymbopogon citratus. Engevista, 19(2), 328-38.

Granella, S. J., Bechlin, T. R., & Christ, D. (2020). Modelagem das isotermas de dessorção e do calor isostérico de sementes de crotalária. Pesquisas Agrárias e Ambientais, 8(1), 124-8.

Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. Journal of research of the national bureau of standards, 81(1), 89-96.

Instituto Adolfo Lutz (2005). Métodos físico-químicos para análise de alimentos: normas analíticas do Instituto Adolfo Lutz. 4ª ed. Brasília (DF): ANVISA, 1018pp.

Mar, J. M., Silva, L. S., Azevedo, S. G., França, L. P., Goes, A. F., Santos, A. L., ... & Sanches, E. A. (2018). Lippia origanoides essential oil: An efficient alternative to control Aedes aegypti, Tetranychus urticae and Cerataphis lataniae. Industrial crops and products, 111(1), 292-7.

Mathai, A. M., Haubold, H. J. (2017). Probability and Statistics: A Course for Physicists and Engineers. Walter de Gruyter GmbH & Co KG.

Mghazli, S., Ouhammou, M., Hidar, N., Lahnine, L., Idlimam, A., & Mahrouz, M. (2017). Drying characteristics and kinetics solar drying of Moroccan rosemary leaves. Renewable Energy, 108(1), 303-10.

Moraes, V. R. S., Nogueira, P. C. L., Costa, E. V., Santos, L. S., Silva, V. R., Bomfim, L. M., & Bezerra, D. P. (2018). Phytochemical and Biological Properties of Lippia gracilis. In Anticancer plants: Properties and Application (pp. 37-55). Springer, Singapore.

Moussaoui, H., Bahammou, Y., Idlimam, A., Lamharrar, A., & Abdenouri, N. (2019). Investigation of hygroscopic equilibrium and modeling sorption isotherms of the argan products: A comparative study of leaves, pulps, and fruits. Food and bioproducts processing, 114(1), 12-22.

Nunes, M. R., Castilho, M. D. S. M., Veeck, A. P. L., Rosa, C. G., Noronha, C. M., Maciel, M. V., & Barreto, P. M. (2018). Antioxidant and antimicrobial methylcellulose films containing Lippia alba extract and silver nanoparticles. Carbohydrate polymers, 192(1), 37-43.

Oliveira, F. S., Andrade, E. T., Rios, P. A., Moreira, K. S., & Salvio, L. G. A. (2020). Mathematical modeling of drying kinetics and hygroscopic balance of Cymbopogon flexuosus leaves. Research, Society and Development, 9(7), 10973594.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia- Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 04 Junho 2020.

Quequeto, W. D., Siqueira, V. C., Mabasso, G. A., Isquierdo, E. P., Leite, R. A., Ferraz, L. R., ... & Martins, E. A. S. (2019). Mathematical Modeling of Thin-Layer Drying Kinetics of Piper aduncum L. Leaves. Journal of Agricultural Science, 11(8), 225-35.

Salimena, F. R. G. (2002). Novos sinônimos e tipificações em Lippia sect. Rhodolippia (Verbenaceae). Darwiniana, 40(1), 121-5.

Sampaio, R. M., Monteles Neto, J. P., Perez, V. H., Marcos, S. K., Boizan, M. A., & Silva, L. R. (2017). Mathematical modeling of drying kinetics of persimmon fruits (Diospyros kaki cv. Fuyu). Journal of Food Processing and Preservation, 41(1), e12789.

Silva, N. C. B., dos Santos, S. G., da Silva, D. P., Silva, I. L., & Rodovalho, R. S. (2019). Drying kinetics and thermodynamic properties of boldo (Plectranthus barbatus Andrews) leaves. Científica, 47(1), 01-7.

Simha, P., Mathew, M., & Ganesapillai, M. (2016). Empirical modeling of drying kinetics and microwave assisted extraction of bioactive compounds from Adathoda vasica and Cymbopogon citratus. Alexandria Engineering Journal, 55(1), 141-50.

Soodmand-Moghaddam, S., Sharifi, M., Zareiforoush, H., & Mobli, H. (2020). Mathematical modeling of lemon verbena leaves drying in a continuous flow dryer equipped with a solar pre-heating system. Quality Assurance and Safety of Crops & Foods, 12(1), 57-66.

Souza, A. V. V. D., de Britto, D., Soares dos Santos, U., Bispo, L. P., Turatti, I. C. C., Lopes, N. P., & Almeida, J. R. G. C. (2017). Influence of season, drying temperature and extraction time on the yield and chemical composition of ‘marmeleiro’(Croton sonderianus) essential oil. Journal of Essential oil Research, 29(1), 76-84.

Teixeira, L. P., Andrade, E. T., Da Silva, P. G. L. (2012). Determinação do equilíbrio higroscópico e do calor isostérico da polpa e da casca do abacaxi. Engevista, 14(2), 172-84.

Published

28/06/2020

How to Cite

MOREIRA, K. S.; ANDRADE, E. T. de; RIOS, P. de A.; OLIVEIRA, F. da S. de; SALVIO, L. G. A. Drying Kinetics and Hygroscopic Balance of Rosemary Leaves. Research, Society and Development, [S. l.], v. 9, n. 8, p. e147985401, 2020. DOI: 10.33448/rsd-v9i8.5401. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/5401. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences