Study of lactose crystallization in a vibrated bed with high seeding through a central composite design

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.5734

Keywords:

Crystallization; Lactose; Vibrated bed; Central composite design; Optimization.

Abstract

Crystallization of lactose in a vibrated bed is a good alternative for obtaining lactose with greater uniformity and yield compared to conventional crystallizers. A central composite design was proposed to verify the significant variables of the operation, analysis of the response surfaces and technical optimization of the process. The maximum yield achieved in design with commercial seeds was 126%, which resulted in the largest final diameter of 4.8 × 10-6 m. There is a great influence of supersaturation and operating time on the mass yield and product size. In optimization, the predicted conditions as the maximum response generators indicated responses of 138% and 4.8 × 10-6 m which, when tested experimentally, resulted in responses of 138.96 ± 3.22% for the yield and 4.777 ± 0.092 × 10-6 m for the final average diameter, with deviations from the predicted values of 0.85% and 0.86%, respectively. A decrease in the mean size of the crystals was observed, in relation to the average size of the seeds inserted at the beginning of the crystallization, which may be related to the configuration of the seeds used, which present microparticles adhered to the surface of the crushed crystals, generating new crystallization nuclei and wear or detachment of portions of fractured seeds at the time of grinding.

References

Allen, T. (1990). Particle Measurement. 4 ed. London: Chapman and Hall, 806p.

Fedyushkin, A., Bourago, N., Polezhaev, V., & Zharikov, E. (2005). The influence of vibration on hydrodynamics and heat-mass transfer during crystal growth. Journal of Crystal Growth, 275(1), 1557–63. https://doi.org/10.1016/j.jcrysgro.2004.11.220

Ganzle, M. G., Haase, G., & Jelen, P. (2008). Lactose: crystalization, hydrolysis and value-added derivatives. International Dairy Journal, 18(1), 685-94. https://doi.org/10.1016/j.idairyj.2008.03.003

Garside, J., & Shah, M.B. (1980). Crystallization kinetics from MSMPR crystallizers. Industrial Engineering Chemistry Process Design and Development, 19, 509–514. https://doi.org/10.1021/i260076a001

Hartel, R. W. (2001). Crystallization in foods. Gaithersburg, MD: Aspen Publishers.

Macfhionnghaile, P., Svoboda, V., Mcginty, J., Nordon, A., & Sefcik, J. (2017). Crystallization Diagram for Antisolvent Crystallization of Lactose: Using Design of Experiments To Investigate Continuous Mixing-Induced Supersaturation. Crystal Grow & Design, 17, 2611-2621. https://pubs.acs.org/doi/10.1021/acs.cgd.7b00136

Malagoni, R. A. (2010). Cristalização de ácido cítrico em leito vibrado. 297 f. Tese (Doutorado em Engenharia Química) - Universidade Federal de Uberlândia, Programa Pós-Graduação em Engenharia Química, Uberlândia. https://repositorio.ufu.br/handle/123456789/15048

Montgomery, D. C., & Calado, V. (2003). Planejamento de Experimentos Usando o Statistica. Rio de Janeiro: E-Papers Serviços Editoriais.

Mullin, J.W. (2001). Crystallization. 4 ed. London: Butterworth-Heinemmann. 594 p.

Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.

Shi, X., & Zhong, Q. (2014). Enhancing lactose crystallization in aqueous solutions by soluble soybean polysaccharide. Food Research International, 66, 432-437. http://dx.doi.org/10.1016/j.foodres.2014.10.018

Shi, Y.; Liang, B., & Hartel, R.W. (2006). Crystal refining technologies by controlled crystallization. United States patent US 2006/0128953 A1.

Teixeira, G. A., Batista, F. F., Malagoni, R. A., & Finzer, J. R. D. (2019). Continuously monitored lactose crystallization in a vibrated bed. Brazilian Journal of Food Technology, v. 22. https://doi.org/10.1590/1981- 6723.27518

Teixeira, G. A., William, F. V., Finzer, J. R. D., & Malagoni, R. A. (2012). Operational optimization of anhydrous citric acid crystallization using large number of seed crystals. Powder Technology, 217, 634–640. https://doi.org/10.1016/j.powtec.2011.11.047

Wong, S. Y., Bund, R. K., Connelly, R. K., & Hartel, R. W. (2012). Designing a lactose crystallization process based on dynamic metastable limit. Journal of Food Engineering, 111, 642–654. https://doi.org/10.1016/j.jfoodeng.2012.03.003

Wong, S. Y., Bund, R. K., Connelly, R. K., & Hartel, R. W. (2011). Determination of the dynamic metastable limit for α-lactose monohydrate crystallization. International Dairy Journal, 21, 839–847. https://doi.org/10.1016/j.idairyj.2011.05.003

Published

20/07/2020

How to Cite

TEIXEIRA, G. A.; MALAGONI, R. A.; GONÇALVES, R. V.; FINZER, J. R. D. Study of lactose crystallization in a vibrated bed with high seeding through a central composite design. Research, Society and Development, [S. l.], v. 9, n. 8, p. e601985734, 2020. DOI: 10.33448/rsd-v9i8.5734. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/5734. Acesso em: 20 apr. 2024.

Issue

Section

Engineerings