Graph analysis and visualization techniques in Psychology: using NodeXL

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.5759

Keywords:

Graph theory; Systematic review; Psychology

Abstract

The systematic review is an essential method for collecting data on a particular object of study. It is a type of research that requires a strict protocol for searching, collecting, analyzing and presenting data, with or without the use of statistical methods. In this sense, Graph Theory is one of the branches of mathematics that offers important resources for the analysis and representation of the relationships between variables of any nature, being also very useful in research such as systematic reviews in the field of psychology. This article is an innovative methodological proposal that aims to describe: the basic process of construction, interpretation and the use of graphs in systematic reviews applied to the area of psychology. The results indicate that with the use of search techniques with graphs it is possible to view and identify rules of association between keywords, for example, in addition to assisting in the investigation of the relationships between the variables under study. It is concluded that the techniques of analysis and visualization by means of graphs, as well as the application of a centrality measure, proved to be adequate and effective, being able to contribute to systematic review studies.

References

Castro, A. A. (1992). Revisão Sistemática e Meta-análise (pp. 1-11).

Cordeiro, A. M., et al. (2007). Revisão sistemática: uma revisão narrativa. Revista do Colégio Brasileiro de Cirurgiões, 34(6), 428-431.

Dancey, C. P., & Reidy, J. (2006). Estatística sem Matemática para psicologia. Artmed.

Hansen, D. L., Shneiderman, B., & Smith, M. A. (2011). Analyzing Social Media Networks with NodeXL. Analyzing Social Media Networks with NodeXL (pp. 11–29). Elsevier. https://doi.org/10.1016/B978-0-12-382229-1.00002-3

Hansen, D. L., Shneiderman, B., & Smith, M. A. (2010a). Analyzing Social Media Networks with NodeXL: Insights from a Connected World. Graduate Journal of Social Science (Vol. 8, p. 304). Retrieved from http://www.amazon.com/dp/0123822297

Hansen, D. L., Shneiderman, B., & Smith, M. A. (2010b). Analyzing Social Media Networks with NodeXL: Insights from a Connected World. (D. Hansen, B. Shneiderman, & M. A. Smith, Eds.)Graduate Journal of Social Science (Vol. 8, p. 304). Morgan Kaufmann. Retrieved from http://www.amazon.com/dp/0123822297

Locke, E. A. (1976). The nature and causes of job satisfaction. In Handbook of Industrial and Organizational Psychology, (pp. 1297–1349).

Matos, I. M. D. (2013). Teoria dos grafos no ensino básico e secundário. Universidade de Aveiro. Retrieved from http://hdl.handle.net/10773/12083

Pinheiro, J. M. V. (2013). A investigação e as redes de conhecimento na European Network for Housing Research. Porto : [Edição do Autor]. Retrieved from http://repositorio-aberto.up.pt/handle/10216/72175

Rother, E. T. (2007). Revisão narrativa vs revisão sistemática. Acta Paulista de Enfermagem, 20, 6–7.

Smith, M. A. (2013). NodeXL: Simple network analysis for social media. 2013 International Conference on Collaboration Technologies and Systems (CTS), 89–93. https://doi.org/10.1109/CTS.2013.6567211

Sousa, D. J. R. (2010, February 8). Caracterização de ligações entre utilizadores em redes sociais. Universidade do Porto. Retrieved from http://repositorio-aberto.up.pt/handle/10216/57672

Sousa, M. R., & Ribeiro, A. L. P. (2009). Revisão sistemática e meta-análise de estudos de diagnóstico e prognóstico: um tutorial. Arquivos Brasileiros de Cardiologia, 92(3), 241-251.

Published

20/07/2020

How to Cite

RAMOS, M. F. H.; PONTES, F. A. R.; SILVA, S. S. da C.; PEREIRA, E. C. de C. S. Graph analysis and visualization techniques in Psychology: using NodeXL. Research, Society and Development, [S. l.], v. 9, n. 8, p. e608985759, 2020. DOI: 10.33448/rsd-v9i8.5759. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/5759. Acesso em: 19 jan. 2021.

Issue

Section

Human and Social Sciences