Simple and low-cost interferogram projection system for small-size automotive parts profilometry: benchmarking with a commercial apparatus

Authors

DOI:

https://doi.org/10.33448/rsd-v9i9.7499

Keywords:

Optical 3D measurement; Interferogram projection; Fringe evaluation; Interferometers.

Abstract

Three-dimensional (3D) contouring has become very important in industry and in many other production systems. The optical techniques provide many attractive properties for such measurement due to their precision, reliability, accuracy and ability to measure small and fragile objects. In this work we report the study, the development and the performance of a low-cost optical device based on interferogram projection in order to measure the sub-millimetric relief of polymeric plates containing biomimetic textures used in the automotive industry. The interferogram was generated by a Twyman-Green interferometer illuminated by a 532-nm green laser. The measurement was performed by means of phase-shifting and phase-unwrapping procedures and the results were benchmarked with the ones obtained by a commercial device.

References

Angelo, J. P., Chen, S.-J., Ochoa, M., Sunar, U., Gioux, S. & Intes, X., (2019). Review of structured light in diffuse optical imaging, Journal of Biomedical Optics 24, 7. 071602. https://doi.org/10.1117/1.JBO.24.7.071602

Barbosa, E. A., Silva, D. M., Nascimento, C. E., Galvão, F. L., & Mittani, J. C. R. (2013). Progressive power lens measurement by low coherence speckle interferometry, Optics and Lasers in Engineering, 51 (7) 898-906. https://doi.org/10.1016/j.optlaseng.2013.02.007

Cardoso, K. C., Gazzola, J., & Dal Fabbro, I. M., (2014). Application of moiré technique on strain analysis in farm machinery elements. Revista de Ciências Agronômicas 45, 3 . https://doi.org/10.1590/S1806-66902014000300007

Chen, L. C., & Tsai, L. H., (2011). Dual Phase-shifting Moiré Projection with Tunable High Contrast Fringes for Three-Dimensional Microscopic Surface Profilometry. Physics Procedia 19. 67–75. https://doi.org/10.1016/j.phpro.2011.06.127

Creath, K. (1988), Phase measurement Techniques. In Progress in Optics, Elsevier, p. 349-393. https://doi.org/10.1016/S0079-6638(08)70178-1

Drexler, W., Morgner, U., Ghanta, R. K., Kärtner, F. X., Schuman, J. S., & Fujimoto, J. G., (2001). Ultrahigh-resolution ophthalmic optical coherence tomography, Nature Medicine 7, 4 502–507. https://doi.org/10.1038/86589

Ghiglia, D. C., Mastin, G. A., & Romero, L. A., (1987). Cellular-automata method for phase unwrapping, Journal of the Optical Society of America A 4. 210–219. https://doi.org/10.1364/JOSAA.4.000267

He, X., Sun, W., Zheng, X., & Nie, M., (2006). Static and dynamic deformation measurements of micro beams by the technique of digital image correlation, Key Engineering Materials 326-328. 211–214. https://doi.org/10.4028/www.scientific.net/KEM.326-328.211

Jeng, J., (2011) Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics 3, 128–160. https://doi.org/10.1364/AOP.3.000128

Laughner, J. I., Zhang, S., Li, H., Shao, C. C., & Efimov, I. R., (2012). Mapping cardiac surface mechanics with structured light imaging. Am J Physiol Heart Circ Physiol 303, 6 H712-20, https://doi.org/10.1152/ajpheart.00269.2012

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., Yu, X., Kaartinen, H., Jaakkola, A., Guan, F., Holopainen, M., & Vastarant, M., (2016). Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing 115. 63-77. https://doi.org/10.1016/j.isprsjprs.2016.01.006

McClatchy, D. M., Hoopes, P. J., Pogue, B. W., & Kanick, S. C. (2017). Monochromatic subdiffusive spatial frequency domain imaging provides in-situ sensitivity to intratumoral morphological heterogeneity in a murine model. Journal of. Biophotonics 10, 2. 211–216. https://doi.org/10.1002/JBIO.201600181

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. UAB/NTE/UFSM.

Quan, C., Tay, C. J., He, X. Y., Kang, X., & Shang, H. M., (2002). Microscopic surface contouring by fringe projection method. Optics and Laser Technology 34, 7. 547–552. https://doi.org/10.1016/S0030-3992(02)00070-1

Son, S., Park, H., & Lee, K. H., (2002). Automated laser scanning system for reverse engineering and inspection. International Journal of Machine Tools and Manufacture, 42, I8 889-897. https://doi.org/10.1016/j.phpro.2011.06.127

Van de Giessen, M., Angelo, J. P., & Gioux, S., (2015). Real-time, profile-corrected single snapshot imaging of optical properties. Biomedical Optics Express 6,10. 4051–4062. https://doi.org/10.1364/BOE.6.004051

Windecker, R., Franz S., & Tiziani, H.-J. (1999) Optical roughness measurements with fringe projection, Applied Optics 38 (13) 2837-2842. https://doi.org/10.1364/AO.38.002837

Zhou, G., Li, Z., Wang, C., & Shi, Y., (2009) A novel method for human expression rapid reconstruction, Tsinghua Science & Technology 14. 62-65. https://doi.org/10.1016/S1007-0214(09)70068-9

Downloads

Published

27/08/2020

How to Cite

HENRIQUE, M. C.; SAITA, M. T.; DIB, L. F. G.; BARBOSA, E. A.; SANTOS, E. E. dos; GALHARDI, A. C. Simple and low-cost interferogram projection system for small-size automotive parts profilometry: benchmarking with a commercial apparatus. Research, Society and Development, [S. l.], v. 9, n. 9, p. e486997499, 2020. DOI: 10.33448/rsd-v9i9.7499. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/7499. Acesso em: 25 apr. 2024.

Issue

Section

Engineerings