Lactic acid bacteria isolated from Coalho cheese from northeast Brazil in dairy production: A screening for technological application

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8457

Keywords:

Dairy culture; Coalho cheese; Bioprospecting; Dairy industry.

Abstract

In Brazil, dairy production is the second most important segment of the food industry, due to its nutritional and sensory characteristics. Lactic cultures are used in production technology to accentuate the flavor, aroma, texture, and acidity of dairy products that make them more acceptable to consumers. Therefore, the objective of this study was to evaluate the technological potential of species of the genus Enterococcus and strains of S. infantarius subsp. infantarius isolated from artisanal Coalho cheese from Paraíba, Brazil, to select them for the manufacture of fermented dairy products. The acidifying capacity, proteolytic activity, aroma production, β-Galactosidase activity, tolerance to sodium chloride, and antagonistic activity against different pathogens were evaluated. Of the strains analyzed, 26.67% were considered fast acidifiers, 33.33% were able to produce proteolytic enzymes, 26.67% showed β-galactosidase enzymatic activity and 33.33% were tolerant to sodium chloride. The pathogens are inhibited by 40.00% of the lactic acid bacteria (BAL) tested. The strains of Enterococcus showed higher values than the strains of S. infantarius subsp. infantarius, in particular the E. faecium KT990027 strain. Thus, we can conclude that E. faecium KT990027 can be used as a starter culture, as it presented the best general technological characteristics applicable to this type of culture. These results confirm that the artisanal Coalho cheese from Paraíba has BAL that can be used in the dairy industry.

References

Aryana, K. J., & Olson, D. W. (2017). A 100-year review: Yogurt and other cultured dairy products. Journal of Dairy Science, (100), 9987–10013.

Aspri, M., Bozoudi, D., Tsaltas, D., Hill, C., & Papademas, P. (2016). Raw donkey milk as a source of Enterococcus diversity: Assessment of their technological properties and safety characteristics. Food Control, (73), 81-90. Doi: 10.1016/j.foodcont.2016.05.022.

Aspri, M., O'Connor, P. M., Field, D., Cotter, P. D., Ross, P. R., Hill, C., & Papademas, P. (2017). Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk, in the bio-control of Listeria monocytogenes in fresh whey cheese. International Dairy Journal, (73), 1-9. Doi: 10.1016/j.idairyj.2017.04.008.

Banwo, K., A. Sanni, A., & Tan, H. (2013). Technological properties and probiotic potential of Enterococcus faecium strains isolated from cow milk. Journal of Applied Microbiology, 114 (1), 229-241.

Belgacem, Z. B., Abriouel, H., Omar, N. B., Lucas, R., Canamero, M. M., Gálvez, A., & Manai, M. (2009). Antimicrobial activity, safety aspects, and some technological properties of bacteriocinogenic Enterococcus faecium from artisanal Tunisian fermented meat. Food Control, 21 (4), 462-470. Doi: 10.1016/j.foodcont.2009.07.007.

Beresford, T. P., Fitzsimons, N. A., Brennan, N. L. & Cogan, T. M. (2001) Recent advances in cheese microbiology. Int. Dairy, (11), 259-274.

Cabral, M. L. B., Lima, M. S. F., Araújo, G. A., Costa, E. F., Porto, A. L. F., & Cavalcanti, M.T. H. (2016). Queijos artesanais fonte de bactérias ácido láticas selvagens para formulação de fermentos tradicionais. Journal of bioenergy and food Science, 3(4), 207-215. doi:10.18067/jbfs. v3i4.111.

Cogan, T. M., Barbosa, M., Beuvier, E., Bianchi-Salvadori, B., Cocconcelli, P. S., & Fernandes, I. (1997). Characterization of the lactic acid bacteria in arti- sanal dairy products. Journal of Dairy Research, (64), 409-421.

Delorme, C., Bartholini, C., Bolotine, A., Ehrlich, S. D., & Renault, P. (2010). Emergence of a cell wall protease in the Streptococcus thermophilus population. Appl. Environ. Microbiol., 76(2), 451– 460.

Dias, G. M. P., Silva, A. B., Granja, N. M. C., Silva, T. N., Lima, G.V. M., Cavalcanti M. T. H., & Porto, A. L. F. (2019). Can Coalho cheese lactic microbiota be used in dairy fermentation to reduce foodborne pathogens? Scientia Plena, 15 (2), 1-9. Doi: 10.14808/sci.plena.2019.021501.

Domingos-Lopes, M. F. P., Stanton, C., Ross, P. R., Dapkevicius, M. L. E., & Silva, C. C. G. (2017). Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese. Food Microbiology, (63), 178-190. Doi: 10.1016/j.fm.2016.11.014.

Favaro, L., Basaglia, M., Casella, S., Hue, I., Dousset, X., Franco, B. D. G. M., & Todorov, S. D. (2013). Bacteriocinogenic potential and safety evaluation of non-starter Enterococcus faecium strains isolated from home made white brine cheese. Food Microbiology, (38), 228-239. Doi: 10.1016/j.fm.2013.09.008.

Fox, P. F., Guinee, T. P., Cogan, T. M., & Mcsweeney, P. L. H. (2000). Fundamentals of cheese science. Gaithersburg: Aspen Publishers, (1), 1-588.

Franz, C., Van Belkum, M. J., Holzapfel, W. H., Abriouel, H., & Galvez, A. (2007). Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev, (31), 293–310.

Furtado, M. M. (1990). Leite de búfala: Características e Fabricação de Queijos. EPAMIG 125 (Empresa de Pesquisa Agropecuária de Minas Gerais), Institute de Laticínios. Minas Gerais.

Galia, W., Perrin, C., Genay, M., & Dary, A. (2009). Variability and molecular typing of Streptococcus thermophilus strains displaying different proteolytic and acidifying properties. Int. Dairy J., 19(2), 89–95.

GDP, Global Dairy Platform. (2020). Recuperdo de https://www.globaldairyp latform.com/wp-content/uploads/2018/04/2016-annual-review-final.pdf.

Giraffa, G. (2003) Functionality of enterococci in dairy products. Int J Food Microbiol, (88), 215–222.

Gobbetti, M., De Angelis, M., Di Cagno, R., Mancini, L., & Fox, P.F. (2015). Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends Food Sci. Tech. (45), 167-178.

Guedes Neto, L. G., Souza, M. R., Nunes, A. C., Nicoli, J. R. & Santos, W. L. M. (2005). Atividade antimicrobiana de bactérias ácido-lácticas isoladas de queijos de coalho artesanal e industrial frente a microrganismos indicadores. Arq. Bras. Med. Vet. Zootec. Supl, (2)245-250.

Han, X., Zhang, L., Yu, P., Yi. H., & Zhang, Y. (2013). Potential of LAB starter culture isolated from Chinese traditional fermented foods for yoghurt production. International Dairy Journal, 34 (2), 247-251. Doi: 10.1016/j.idairyj.2013.09.007.

Harrigan, W. F. (1998). Laboratory Methods in Food Microbiology. (3a ed.), San Diego: Academic Press.

Husain, Q. (2010). Beta galactosidases and their potential applications: A review. Crit. Rev. Biotechnol. (30), 41–62. https: / / doi .org/ 10.3109/ 07388550903330497.

İspirli, H., Demirbaş, F., & Dertli, E. (2016). Characterization of functional properties of Enterococcus spp. isolated from Turkish white cheese. LWT - Food Science and Technology, (75), 358-365. Doi: https://doi.org/10.1016/j.lwt.2016.09.010.

Jaouani, I., Abbassi, M. S., Ribeiro, S. C., Khemiri, M., Mansouri, R., Messadi, L., & Silva, C. C. G. (2015). Safety and technological properties of bacteriocinogenic enterococci isolates from Tunisia. Journal of Applied Microbiology, 119 (4), 1189-1100. Doi: 10.1111/jam.12916.

Kihal, M., Prevost, H., Lhotte, M. E., Huang, D. Q., & Diviès, C. (1996). Instability of plasmid-encoded citrate permease in Leuconostoc. J. Appl. Microbiol, (22), 219–223.

MAPA, Ministério da Agricultura, Pecuária e Abastecimento. (2017). Recuperado de file:///C:/Users/leand/Downloads/projecoes_agronegocio_2017_2_web%20(4).pdf.

McMahon, D. J., & Oberg, C. J. (2017). Pasta-Filata Cheeses, in: Cheese. Elsevier, 1041–1068.

Medeiros, R. S., Araújo, L. M., Queiroga Neto, V., Andrade, P. P., Melo, M. A., & Gonçalves M. M. B. P. (2016). Identification of lactic acid bacteria isolated from artisanal Coalho cheese produced in the Brazilian Northeast. CyTA - Journal of Food, 14 (4), 613-620.

Moreno, M. F., Sarantinopoulos, P., Tsakalidou, E., & De Vuyst, L. (2006). The role and application of enterococci in food and health. International Journal of Food Microbiology, (106),1-24.

Nagy, Z., Kiss, T., Szentirmai, A., & Biró, S. (2001). β-Galactosidase of Penicillium chrysogenum: Production, purification and characterization of the enzyme. Protein Expr Purif, 21(1), 24-29. Doi: 10.1006 / prep.2000.1344.

Pailin, T., Kang, D. H., Schmidt, K., & Fung, D. Y. C. (2001). Detection of extracellular bound proteinase in EPS-producing lactic acid bacteria cultures on skim milk agar. Applied Microbiology, (33)45–49.

Papademas, P., & Aspri, M. (2014). Dairy pathogens: Characteristics and impact. In P. Papademas (Ed.), Dairy microbiology: A practical approach (pp. 69-113). New York, NY, USA: CRC Press.

Ribeiro, S. C., Costa, M. C., Todorov, S. D., Franco, B. D. G. M., Dapkevicius, M. L. E., & Silva, C. C. G. (2014). Technological properties of bacteriocin-producing lactic acid bacteria isolated from Pico cheese an artisanal cow's milk cheese. Journal of Applied Microbiology, 116 (3), 573-585.

Scholz-Ahrens, K. E., Ahrens, F., & Barth, C. A. (2020). Atributos nutricionais e de saúde do leite e imitações do leite. Eur J Nutr (59), 19–34. Doi: 10.1007/s00394-019-01936-3.

Settanni, L., & Moschetti, G. (2010). Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiology, (27), 691-697.

Silva, F. T. (2005). Queijo Mussarela. Brasília: Embrapa.

Silvério, S. C., Macedo, E. A., Teixeira, J. A., & Rodrigues, L. R. (2018). New β-galactosidase producers with potential for prebiotic synthesis. Bioresour. Technol. (250), 131-139. Doi: 10.1016/j.biortech.2017.11.045.

Thirabunyanon, M., & Thongwittaya, N. (2012). Protection activity of a novel probiotic strain of Bacillus subtilis against Salmonella Enteritidis infection. Research in Veterinary Science. (93), 74-81.

Vaillancourt, K., Bedard, N., Bart, C., Tessier, M., Robitaille, G., Turgeon, N., Frenette, M., Moineau, S., & Vadeboncoeur, C. (2008). Role of galK and galM in galactose metabolism by Streptococcus thermophilus. Appl. Environ. Microbiol. (74), 1264–1267. Doi: 10 .1128/ AEM .01585 -07.

Van den berghe, E., De Winter, T., & De Vuyst, L. (2006). Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature- and pHdependent switch-off mechanism when growth is limited due to nutrient depletion. International Journal of Food Microbiology, (107) 159-170.

Yang, E., Fan, L., Jiang, Y., Doucette, C., & Fillmore, S. (2012). Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express, 2(1):1-12. Doi 10.1186/2191- 0855-2-48.

Zárate, G., & Chaia, A.P. (2012). Influence of lactose and lactate on growth and b- galactosidase activity of potential probiotic Propionibacterium acidipropionici. Anaerobe, (18), 25-30.

Published

07/10/2020

How to Cite

BRITO, L. P. de .; SILVA, E. C. da; CALAÇA, P. R. de A. .; MEDEIROS, R. S. de .; SOARES, M. T. C. V.; PORTO, A. L. F. . Lactic acid bacteria isolated from Coalho cheese from northeast Brazil in dairy production: A screening for technological application. Research, Society and Development, [S. l.], v. 9, n. 10, p. e5249108457, 2020. DOI: 10.33448/rsd-v9i10.8457. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/8457. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences