Carbon and nitrogen metabolism in young Tachigali vulgaris plants subjected to water deficit

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8732

Keywords:

Adjustment; Biochemistry; Synthesis; Osmolytes.

Abstract

Plants’ biochemical responses to water deficit are associated with their ability to synthesize accumulate osmolytes compatible to regulatory properties of water potential. The aim of the current study is to evaluate carbon and nitrogen metabolism in Tachigali vulgaris plants subjected to three water suspension periods. The experiment was carried out in greenhouse and followed a completely randomized design, at 3 x 2 factorial arrangement (three times: zero, five and ten water suspension days; and two water conditions: control and water deficit), with 4 repetitions; results were subjected to analysis of variance and means were compared through t-test at 5% probability level, in statistical package (Assistat 7.7 beta). The following variables recorded decreased values: relative water content RWC in leaf tissue (by 32.14%); nitrate ion in leaves (by 18.67%) and in roots (by 14.40%); nitrate reductase enzyme activity in leaves (by 17.06%) and roots (by 15.77%); starch concentration in leaf tissue (by 44.98%) and roots (by 21.07%). On the other hand, the following variables recorded increased values: free ammonium concentration in leaves (by 64.83%) and roots (by 1.61%); total soluble amino acids in leaf tissue (by 28.03%) and roots (by 8.42%); total soluble carbohydrates in leaves (by 3.12%) and roots (by 11.05%); sucrose in leaves (by 4.77%) and roots (by 24.77%); proline in leaves (by 193.58%) and roots (by 57.26%). Biochemical processes observed in T. vulgaris plants were affected by water deficit, which indicated that this species is capable of adopting mechanisms and strategies in order to survive under stressful conditions.

Author Biographies

Wander Luiz da Silva Ataíde, Universidade Federal Rural da Amazônia

 

 

Glauco André dos Santos Nogueira, Universidade Federal Rural da Amazônia

 

 

Cândido Ferreira de Oliveira Neto, Universidade Federal Rural da Amazônia

 

 

Ana Ecídia de Araújo Brito, Universidade Federal Rural da Amazônia

 

 

Thays Correa Costa, Universidade Estadual do Norte Fluminense Darcy Ribeiro

 

 

Jéssica Taynara da Silva Martins, Universidade Estadual do Norte Fluminense Darcy Ribeiro

 

 

Liliane Corrêa Machado, Universidade Estadual do Norte Fluminense Darcy Ribeiro

 

 

Karollyne Renata Silva de Paula Batista, Universidade Estadual de Santa Catarina

 

   

Ana Clara Moura de Sousa, Universidade Federal Rural da Amazônia

 

 

References

Abreu, D. C. A., Porto, K. G. & Nogueira, A. C. (2017). Métodos de Superação da Dormência e Substratos para Germinação de Sementes de Tachigali vulgaris L.G. Silva & H. C. Lima. Floresta e Ambiente, 24, 2-10. doi: https://doi.org/10.1590/2179-8087.071814.

Almeida, V. O., Batista, K. A., Medeiros, M. C. B., Moraes M. G. & Fernandes K. F. (2019). Effect of drought stress on the morphological and physicochemical properties of starches from Trimezia juncifolia. Carbohydrate Polymers, 212, 304-311. doi: https://doi.org/10.1016/j.carbpol.2019.02.015.

Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207. doi: https://doi.org/10.1007/BF00018060.

Bianchi, L., Germino, G. H. & Silva, M. A (2016). Adaptação das Plantas ao Déficit Hídrico. Acta Iguazu, Cascavel, 5 (4), 15-32. Retrieved from: http://e-revista.unioeste.br/index.php/actaiguazu/article/view/16006/10892.

Bohórquez, C. A. A. (2019). Absorção e eficiência de uso de nitrogênio por cultivares de café submetidas a déficit hídrico. Tese de doutorado em Fitotecnia. Universidade Federal de Viçosa.

Cataldo, D. A., Maroon, M., Schrader, L. E. & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science & Plant Analysis, 6 (1), 71-80. doi: 10.1080 / 00103627509366547.

Coates, J. C., Moody, L. A. & Saidi, Y. (2011). Plants and the Earth system–past events and future challenges. New Phytologist, 189 (2), 370-373. doi: https://doi.org/10.1111/j.1469-8137.2010.03596.x.

Coelho, D. G. (2018). Cinética de absorção e acúmulo de íons em plantas de sorgo submetidas ao estresse salino: regulação mediada pela fonte de nitrogênio. Tese de doutorado em Agronomia. Universidade Federal do Ceará.

Damatta, F. M., Grandis, A., Arenque, B. C. & Buckeridge M. S. (2010). Impacts of climate changes on crop physiology and food quality. Food Research International, 43 (7), 1814-1823. doi: http://dx.doi.org/10.1016/j.foodres.2009.11.001.

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28 (3), 350-356. doi: https://doi.org/10.1021/ac60111a017.

Freitas, J. M. N. (2014). Comportamento ecofisiológico e bioquímico de plantas jovens de Acapú (Vouacapoua americana Aubl) submetidas à deficiência hídrica. Tese de doutorado em Agronomia, Universidade Federal Rural da Amazônia.

Galdino, A. G. S., Silva, T. I., Silva, J. S. & Silva, C. L. (2018). Teor de aminoácidos como respostas adaptativas de milheto (pennisetum glaucum) ao estresse hídrico e salino. Revista Desafios, 5 (1), 94-99. doi: 10.20873/uft.2359-3652.2018vol5n1p76x.

Hageman, R. H. & Hucklesby, D.P. (1971). Nitrate reductase from higher plants. Methods in Enzymology 23, 491-503. doi: https://doi.org/10.1016/S0076-6879(80)69026-0.

Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J. & Ahmad, A. (2012). Role of proline under changing environments: review. Plant signaling & behavior, 7 (11), 1456-1466. doi: 10.4161 / psb.21949.

Hemaprabha, G., Simon, S., Lavanya, D. L., Sajitha, B. & Tech, S. V. S. (2013). Evaluation of Drought Tolerance Potential of Elite Genotypes and Progenies of Sugarcane (Saccharum sp. hybrids). Sugar Tech, Nova Délhi, 15, 9-16. doi: https://doi.org/10.1007/s12355-012-0182-9.

Hoagland, D. R. & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California, Agricultural Experiment Station, Circular.

Júnior, S. O. M., Silva, J. A. C., Santos, K. P. O., Cordeiro, D. R., Silva, J. V. & Endres, L. (2018). Respostas morfológicas e fisiológicas de cultivares de cana-de-açúcar sob estresse hídrico no segundo ciclo de cultivo. Revista Brasileira de Agricultura Irrigada, 12 (3), 2661-2672. doi: 10.7127/rbai.v12n300830.

Kant, S., Kant, P., Lips, H. & Barak, S. (2007). Partial substituition of NO3- by NH4+ fertilization increases ammonium assimilating enzyme activities and reduces the deleterious effects of salinity on the growth of barley. Journal of Plant Physiology, 164 (3), 303-311. doi: https://doi.org/10.1016/j.jplph.2005.12.011.

Kerbauy, G. B. (2004). Fisiologia vegetal. Rio de Janeiro, Guanabara Koogan.

Leite, R. S. (2019). Déficit hídrico e sua atenuação em plantas de Fisális (Physalis Angulata L.). Dissertação de mestrado em Recursos Genéticos Vegetais. Universidade Estadual de Feira de Santana.

Liu, C., Liu, Y., Guo, K., Fan, D., Li, G., Zheng, Y., Yu, L. & Yang, R. (2011). Effect of trought on pigments, osmotic adjustment and antioxidante enzymes in six Woody plant species in karst habitats of southwestern China. Environmental and experimental botany, 71 (2), 174-183. doi: https://doi.org/10.1016/j.envexpbot.2010.11.012.

Marijuan, M. P. & Bosch, S. M. (2013). Ecophysiology of invasive plants: osmotic adjustment and antioxidants. Trends in Plant Science, 18 (12), 660-666. doi: https://doi.org/10.1016/j.tplants.2013.08.006.

Menezes-Silva, P. E., Sanglard, L. M., Ávila, R. T., Morais, L. E., Martins, S. C., Nobres, P. & Damatta, F. M. (2017). Photosynthetic and metabolic acclimation to repeated drought events play key roles in drought tolerance in coffee. Journal of Experimental Botany, 68 (15), 4309-4322. doi: 10.1093 / jxb / erx211.

Munns, R. & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651-681. doi: https://doi.org/10.1146/annurev.arplant.59.032607.092911.

Oliveira, A. R. & Braga, M. B. (2019). Variedades de cana-de-açúcar submetidas a diferentes lâminas de reposição hídrica por gotejamento subsuperficial. Energia na Agricultura, Botucatu, 34 (3), 350-363. doi: 10.17224/EnergAgric.2019v34n3p350-363.

Paixão, C. L, Jesus, D. S., Costa, D. P., Pereira, P. P. A. & Neto, A. D. A. (2014). Caracterização fisiológicas e bioquímicas de genótipos de girassol com tolerâncias diferenciada ao estresse hídrico. Enciclopédia Biosfera, 10 (19), 2011- 2022. Retrieved from: https://www.researchgate.net/publication/275963851.

Peoples, M. B., Faizah, A. W., Reakasem, B. E. & Herridge, D. F. (1989). Methods for evaluating nitrogen fixation by nodulated legumes in the field. Canberra, Australian Centre for International Agricultural Research.

Slavick, B. (1979). Methods of studying plant water relations. New York, Springer Verlag.

Szabados, L. & Savoure, A. (2009). Proline: a multifunctional amino acid. Trends in Plant Science, 15 (2): 89-97. doi: https://doi.org/10.1016/j.tplants.2009.11.009.

Taiz, L., Zeiger, E., Moller, I. & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal. Porto Alegre, Artmed.

Tavares, H. F. M. & Vannucchi, H. (2016). Aminoácidos: Funções e Segurança. São Paulo, International Life Sciences Institute do Brasil.

Van Handel, E. Direct microdetermination of sucrose. (1968). Anal Biochem, 22 (2), 280-283. doi: https://doi.org/10.1016/0003-2697(68)90317-5.

Weatherburn, M. W. (1967). Phenol hipochlorite reaction for determination of ammonia. Analytical Chemistry, 39 (8), 971-974. doi: https://doi.org/10.1021/ac60252a045.

Zhonng, C., Cao, X., Bai, Z., Zhang, J., Zhu, L., Huang, J. & Jin, Q. O. (2018). Nitrogen metabolism correlates with the acclimation of photosynthesis to short-term water stress in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 125: 52-62. doi: https://doi.org/10.1016/j.plaphy.2018.01.024.

Downloads

Published

11/10/2020

How to Cite

ATAÍDE, W. L. da S. .; NOGUEIRA, G. A. dos S.; OLIVEIRA NETO, C. F. de; BRITO, A. E. de A.; COSTA, T. C.; MARTINS, J. T. da S.; MACHADO, L. C.; BATISTA, K. R. S. de P.; SOUSA, A. C. M. de . Carbon and nitrogen metabolism in young Tachigali vulgaris plants subjected to water deficit. Research, Society and Development, [S. l.], v. 9, n. 10, p. e6169108732, 2020. DOI: 10.33448/rsd-v9i10.8732. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/8732. Acesso em: 8 aug. 2022.

Issue

Section

Agrarian and Biological Sciences