Mode of action of potassium phosphite in the growth and development of Phytophthora nicotianae, causal agent of gummosis in citrus

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.8822

Keywords:

Plasma membrane; Cell wall; Alternative control.

Abstract

The aim of this study was to evaluate the direct effect of Phytogard®, a product based on potassium phosphite, on the development of Phytophthora nicotianae and to verify possible mode of action of this product on the pathogen. The pathogen's mycelium was exposed to increasing concentrations of Phytogard® and mycelial growth, production of fresh mycelium and zoospores production were evaluated. Regarding the possible mode of action of Phytogard® on P. nicotianae, the hypha morphology, electrolyte leakage, lipid peroxidation, protein synthesis and β-1,3-glucanase activity were evaluated. The pathogen mycelium was inhibited as the phosphite concentration was increased. The production of zoospores was reduced from the lowest concentration of Phytogard® used. There were morphological changes in the pathogen's hyphae and the electrolyte leakage increased as the concentration of the product increased and over time. There was no difference between treatments in the analysis of lipid peroxidation and total protein. There was a decrease in the activity of the enzyme β-1,3-glucanase as the concentrations of Phytogard® increased. It is concluded that Phytogard® inhibited mycelial growth, production of fresh mycelium and zoospores production of P. nicotianae. Furthermore, the product decreases the thickness of hyphae and increases the number of atrophied ramifications, in addition to harming plasma membrane permeability and cell wall synthesis of the pathogen.

References

Abeles, F. B., & Foence, L. E. (1970). Temporal and hormonal control of β-1,3-glucanase in Phaseolus vulgaris. Plant Physiology, 45, 305-400.

Adams, D. J. (2004). Fungal cell wall chitinases and glucanases. Microbiology, 150, 2029-2035.

Alexopoulos, C. J., Mims C. W., & Blackwell, M. (1996). Introductory mycology. (4th ed.), New York: John Wiley.

Barchietto, T., Saindrenan, P., & Bompeix, G. (1992). Physiological responses of Phytophthora citrophthora to a sub-inhibitory concentration of phosphonate. Pesticide Biochemistry and Physiology, 42, 151-166.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-257.

Cakmak, I., & Horst, W. J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean. Physiology Plantarum, 83, 463-468.

Coffey, M. D., & Joseph, M. C. (1985). Effects of phosphorus-acid and fosetyl-Al on the life-cycle of Phytophthora cinnamomi and Phytophthora citricola. Phytopathology, 75, 1042–1046.

Creamer, J. R., & Bostock, R. (1986). Characterisation of biological activity of phospholipids from Phytophthora infestans in the hypersensitive response of potato tuber. Physiological and Molecular Plant Pathology, 28, 215-225.

Dalio, R. J. D., Ribeiro Junior, P. M., Resende, M. L. V., Silva, A. C., Blumer, S., Pereira, V. F., Osswald, W., & Pascholati, S. F. (2012). O triplo modo de ação dos fosfitos em plantas. In: Luz WC (Org.). Revisão Anual de Patologia de Plantas – RAPP, 20 (pp. 206-242). Passo Fundo: Gráfica e Editora Padre Berthier dos Missionários da Sagrada Família.

Dalio, R. J. D., Fleischmann, F., Humez, M., & Wolfgang, O. (2014). Phosphite protects Fagus sylvatica seedlings towards Phytophthora plurivora via local toxicity, priming and facilitation of pathogen recognition. Plos One, 9 (1).

Dercks, W., & Buchenauer, H. (1987). Comparative studies on the mode of action of aluminium ethyl phosphite in four Phytophthora species. Crop Protection, 6, 82-89.

Eshraghi, L., Anderson, J., Aryamanesh, N., Shearer, B., Mccomb, J., Hardy, G. E. S., & O’Brien, P. A. (2011). Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathology, 60, 1086-1095.

European Comission. Health & Consumers Directorate-General (2013). Review report for the active substance potassium phosphonates. SANCO/10416/2013 rev 2, 15 March. Recuperado de https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesub stance.ViewReview&id=689.

Feichtenberger, E., Bassanezi, R. B., Spósito, M. B., & Belasque Júnior, J. (2005). Doenças dos Citros. In: Kimati, H., Amorim, L., Rezende, J. A. M., Bergamin Filho, A., & Camargo, L. E. A. (Ed). Manual de Fitopatologia (pp. 239-269). São Paulo: Editora Agronômica Ceres.

Ferreira, R. B., Monteiro, S., Freitas, R., Santos, C. N., Chen, Z., Batista, L. M., Duarte, J., Borges, A., & Teixeira, A.R. (2007). The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology, 8:5, 677-700.

Frac, Fungicide resistance action committee (2020). Fungal control agents sorted by cross resistance pattern and mode of action. Obtido em https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2020-finalb16c2b2c512362eb9a1eff00004acf 5d.pdf?sfvrsn=54f499a_2.

Guest, D., & Grant, B. R. (1991). The complex action of phosphonates as antifungal agents. Biological Review, 66, 159-187.

Graham, J. H., & Timmer, L. W. (1994). Phytophthora diseases of Citrus. Soil and Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. SL 127. Obtido em https://ufdc.ufl.edu/IR00004644/00001.

Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloplasts. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry Biophysics, 25, 189-198.

Ibge, Instituto Brasileiro de Geografia e Estatística (2020). Levantamento Sistemático da Produção Agrícola. Obtido em https://sidra.ibge.gov.br/home/lspa/brasil.

Jackson, T. J., Burgess, T., Colquhoun, I., Hardy, G. E. S., & Jackson, T. J. (2000). Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathology, 49, 147-154.

King, M., Reeve, W., Van der Hoek, M. B., Wiliams, N., Mccomb, J., O’Brien, P. A., & Hardy, G. E. S. J. (2010). Defining the phosphite-regulated transcriptome of the plant pathogen Phytophthora cinnamomi. Molecular Genetics & Genomics, 284, 425-435.

Lenardon, M., Munro, C. A., & Gow, N. A. R. (2010). Chitin synthesis and fungal pathogenesis. Current Opinion in Microbiology, 13, 416-423.

Melo, T. A. (2017). Efeito do extrato da alga marinha Ascophyllum nodosum e do fosfito de potássio na morfofisiologia do fungo Colletotrichum gloeosporioides, na indução de resistência em mangas ‘Tommy Atkins’ contra a antracnose e em características físicas e químicas desses frutos. Tese de doutorado, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, SP.

Miller, G. H. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426-429.

Mills, A. A. S, Platt, H. W., & Hurta, R. A. R. (2004). Effect of salt compounds on mycelia growth, sporulation and spore germination of various potato pathogens. Postharvest Biology and Technology, 34, 341-350.

Neves, M. F., Trombin, V. G., Milan, P., Lopes, F. F., Cressoni, F., & Kalaki, R. (2010). O retrato da citricultura brasileira. São Paulo: CitrusBR.

Niere, J. O., Griffith, J. M., & Grant, B. R. (1990). P-31NMR studies on the effect of phosphite on Phytophthora palmivora. Journal of General Microbiology, 136, 147-156.

Pilbeam, R. A., Howard, K., Shearer, B. L. & Hardy, G. E. S. J. (2011). Phosphite stimulated histological responses of Eucalyptus marginata to infection by Phytophthora cinnamomi. Trees-Structure and Function, 25, 1121-1131.

Roma, R. C. C. (2013). Fosfito de potássio no controle de doenças pós-colheita em bagas de uva ´Itália´ e possíveis mecanismos de ação à Rhizopus stolonifer. Tese de doutorado, Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, SP.

Russell, P. E. (2002). Sensitivity baselines in fungicide resistance research and management. Cambridge UK: FRAC.

Tarhanen, S., Metsarinne, S., Holopainen, T., & Oksanen, J. (1999). Membrane permeability response of lichen Bryoria fuscescens to wet deposited heavy metals and acid rain. Environmental Pollution, 104:1, 121-129.

Published

07/10/2020

How to Cite

REZENDE, D. C. .; BRANDÃO, D. F. R. .; BRAND , S. C.; BLUMER, S.; PASCHOLATI, S. F.; MAFRA, N. M. Mode of action of potassium phosphite in the growth and development of Phytophthora nicotianae, causal agent of gummosis in citrus. Research, Society and Development, [S. l.], v. 9, n. 10, p. e5369108822, 2020. DOI: 10.33448/rsd-v9i10.8822. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/8822. Acesso em: 6 dec. 2022.

Issue

Section

Agrarian and Biological Sciences