The effects of thermal and ethanolic stress in industrial strains of Saccharomyces cerevisiae

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.9091

Keywords:

Fermentation; Yeasts; Stress condition.

Abstract

Saccharomyces cerevisiae is exceptional microorganisms used in biotechnological processes, mainly in the ethanol production chain. Studies of the cellular responses of industrial yeasts under ethanolic and thermal stress in an association are still incipient. This study aimed to evaluate the action of thermal and ethanolic stress in industrial strains of Saccharomyces cerevisiae under different temperatures and concentrations of ethanol, to understand whether these factors influence ethanol production. For cytotoxicity and genotoxicity tests, yeasts were grown in 2% YPD medium incubated for 10 hours at 250 rpm. After growth, the samples were grown in sugarcane juice in concentrations of 5, 10 and 15% ethanol and incubated at 30 and 40 ºC. In Petri dishes containing the solid medium YPD 2% the yeasts were dripped and incubated for 72 hours the cytotoxic action was analyzed by cell growth and genotoxicity through the comet assay and ethanol production by gas chromatography. Cell growth occurred in all conditions, however, at 30 ºC there was inhibition in 10% (v v-1) of ethanol being potentiated in 15% (v v-1), at 40 ºC. The genotoxicity analysis showed an induction of DNA damage in yeasts, however, the FLE yeast was the one with the highest DNA damage index. The yeast Pedra-2 was more tolerant and produced more ethanol, showing to be a tolerant strain concerning the analyzed fermentative interferents.

References

Abdel-Banat, B. M., Hoshida, H., Ano, A., Nonklang, S., & Akada, R. (2010). High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?. Applied microbiology and biotechnology, 85(4), 861-867.

Amorim, H. V., & Lopes, M. L. (2013). Ciência e tecnologia na seleção de leveduras para produção de etanol. Microrganismos em Agroenergia: da Prospecção aos Bioprocessos. Brasília: Embrapa Agroenergia, 42-59.

Amorim, H. V., Lopes, M. L., de Castro Oliveira, J. V., Buckeridge, M. S., & Goldman, G. H. (2011). Scientific challenges of bioethanol production in Brazil. Applied microbiology and biotechnology, 91(5), 1267.

Argueso, J. L., Carazzolle, M. F., Mieczkowski, P. A., Duarte, F. M., Netto, O.V.C., Missawa, S.K., Galzerani.F., Costa, G. G. L., Vidal, R. O., Noronha, M. F., Dominska, M., Andrietta, M. G. S., Andrieta, S. R, Cunha, A. F., Gomes, L. H., Tavares, F. C. A., Alcarde, A. R., Dietrich, F.S., Mccusker, J. H., Petes, T. D., & Pereira, G. A. G. (2009). Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome research, 19(12), 2258-2270.

Azhar, S. H. M., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Faik, A. A. M., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports. 10, 52-61.

Babrzadeh, F.; Jalili, R.; Wang, C.; Shokralla, S.; Pierce, S.; Robinson-Mosher, A.; Nyren, P.; Shafer, R. W.; Basso, L. C.; De Amorim, H. V.; De Oliveira, A. J.; Davis, R. W.; Ronaghi, M.; Gharizadeh, B.; & Stambuk, B. U. (2012). Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Molecular genetics and genomics, 287(6), 485-494.

Batistote, M., Cardoso, C. A. L., Ramos, D. D., & Ernandes, J. R. (2010). Desempenho de leveduras obtidas em indústria de Mato Grosso do Sul na produção de etanol em mosto a base de cana de açúcar. Ciência e Natura, 83-95.

Brown, J. A., & Kobor, M. S. (2019). Budding yeast Rtt107 prevents checkpoint hyperactivation after replicative stress by limiting DNA damage. DNA repair, 74, 1-16.

Caspeta, L., Coronel, J., Montes de Oca, A., Abarca, E., González, L., & Martínez, A. (2019). Engineering high‐gravity fermentations for ethanol production at elevated temperature with Saccharomyces cerevisiae. Biotechnology and bioengineering, 116(10), 2587-2597.

Cao, Z., Xia, C., Jia, W., Qing, W., & Zhang, W. (2020). Enhancing bioethanol productivity by a yeast-Immobilized catalytically active membrane in a fermentation-Pervaporation coupling process. Journal of Membrane Science, 595, 117485.

Cray, J. A., Bell, A. N., Bhaganna, P., Mswaka, A. Y., Timson, D. J., & Hallsworth, J. E. (2013). The biology of habitat dominance; can microbes behave as weeds?. Microbial biotechnology, 6(5), 453-492.

Cray, J. A., Stevenson, A., Ball, P., Bankar, S. B., Eleutherio, E. C., Ezeji, T. C., Singhal, R. S., Thevelein, J. M., Timson, D. J., & Hallsworth, J. E. (2015). Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Current opinion in biotechnology, 33, 228-259.

De Andrade Lima, L. C. (2015). Resposta a danos no DNA após exposição à luz ultravioleta: apagando o fogo antes do incêndio celular. Revista da Biologia, 14(1), 6-16.

Estruch, F. (2000). Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS microbiology reviews, 24(4), 469-486.

Fernandes, F. H., Bustos-Obregon, E., & Salvadori, D. M. F. (2015). Disperse Red 1 (textile dye) induces cytotoxic and genotoxic effects in mouse germ cells. Reproductive Toxicology, 53, 75-81.

Fujita, K., Matsuyama, A., Kobayashi, Y., & Iwahashi, H. (2006). The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols. FEMS yeast research, 6(5), 744-750.

Gallone, B., Steensels, J., Prahl, T., Soriaga, L., Saels, V., Herrera-Malaver, B., Merlevede, A., Roncoroni, M., Voordeckers, K., Miraglia, L., Teiling, C., Steffy, B., Taylor, M., Schwartz, A., Richardson, T., White, C., Baele, G., Maere, S., & Verstrepen, K. J. (2016). Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. Cell, 166(6), 1397-1410.

Giudici, P., Solieri, L., Pulvirenti, A. M., & Cassanelli, S. (2005). Strategies and perspectives for genetic improvement of wine yeasts. Applied microbiology and biotechnology, 66(6), 622-628.

Goddard, M. R., & Greig, D. (2015). Saccharomyces cerevisiae: a nomadic yeast with no niche?. FEMS yeast research, 15(3), fov009.

Hu, C., Zhao, X., Zhao, J., Wu, S., & Zhao, Z. K. (2009). Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 100(20), 4843-4847.

Martins, F., Mamede, M. E. O., Da Silva, A. F., Guerreiro, J., & Lima, S. T. D. C. (2017). Ultraestrutura celular e expressão de proteínas de leveduras hanseniaspora sob efeito do estresse etanólico. Brasilian Journal of Food Technology, 20, 1-6.

Morard, M., Macías, L. G., Adam, A. C., Lairón-Peris, M., Pérez-Torrado, R., Toft, C., & Barrio, E. (2019). Aneuploidy and ethanol tolerance in Saccharomyces cerevisiae. Frontiers in genetics, 10, 82.

Mueller, L. P., Sarabia, D. T., Cardoso, C. A. L., & Batistote, M. (2019). O potencial associado das fontes renováveis e Saccharomyces Cerevisiae para produção de bioetanol. Educação Ambiental em Ação, 68.

Navarro-Tapia, E., Pérez-Torrado, R., & Querol, A. (2017). Ethanol effects involve non-canonical unfolded protein response activation in yeast cells. Frontiers in microbiology, 8, 383.

Riles, L., & Fay, J. C. (2019). Genetic basis of variation in heat and ethanol tolerance in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 9(1), 179-188.

Saini, P., Beniwal, A., Kokkiligadda, A., & Vij, S. (2018). Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochemistry, 72, 1-12.

Santos, R. R. D. (2019). Comparação de sistemas de cultivo convencional e orgânico na produção de cumarina em mikania glomerata spreng. (asteraceae) e avaliação de genotoxicidade.

Souza, J. P., do Prado, C. D., Eleutherio, E. C., Bonatto, D., Malavazi, I., & da Cunha, A. F. (2018). Improvement of Brazilian bioethanol production–Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process. Fungal biology, 122(6), 583-591.

Stanley, D., Bandara, A., Fraser, S., Chambers, P. J., & Stanley, G. A. (2010). The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Journal of applied microbiology, 109(1), 13-24.

Święciło, A. (2016). Cross-stress resistance in Saccharomyces cerevisiae yeast—new insight into an old phenomenon. Cell Stress and Chaperones, 21(2), 187-200.

Tesniere, C., Delobel, P., Pradal, M., & Blondin, B. (2013). Impact of nutrient imbalance on wine alcoholic fermentations: nitrogen excess enhances yeast cell death in lipid-limited must. PLoS One, 8, 1-11.

Vargas-Trinidad, A. S., Lerena, M. C., Alonso-del-Real, J., Esteve-Zarzoso, B., Mercado, L. A., Mas, A., & Combina, M. (2020). Effect of transient thermal shocks on alcoholic fermentation performance. International journal of food microbiology, 312, 108362.

Downloads

Published

14/10/2020

How to Cite

MUELLER, L. P. .; SANTOS, M. do S. M. .; CARDOSO, C. A. L. .; BATISTOTE, M. The effects of thermal and ethanolic stress in industrial strains of Saccharomyces cerevisiae. Research, Society and Development, [S. l.], v. 9, n. 10, p. e6819109091, 2020. DOI: 10.33448/rsd-v9i10.9091. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/9091. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences