Antibacterial and antifungal activities herbácia Zingiber Officinale in dentistry: a literature review




Antibacterial agents; Antifungal agents; Dental biofilm; Zingiber officinale.


The pathogenic dental biofilm formed by species presents itself as a serious problem, since it contributes to the development of oral and bodily diseases. In this sense, Dentistry stands out for expanding knowledge about the oral ecosystem and performing procedures aimed at reducing its pathogenicity and improving oral health. Thus, technological advances and indiscriminate application of antibiotics have made bacterial strains resistant, with a great search for safer, more natural and effective methods. Therefore, the use of plants for healthy treatments is an area of great study in Dentistry. In the present literature review, we sought to analyze the species Zingiber officinali with its antimicrobial and antibiofilm activity. For this study, materials were searched at the BIREME, CINAHL, Cochrane Library, Embase, Google Schoolar, PubMed, Science Direct, published until August 2020. The search for the articles was carried out in August 2020, of the 3,401 studies were refined in 18. The findings showed that the plant Zingiber officinale has the capacity to inhibit certain bacteria in vitro, such as Bacillus sp., Escherichia coli, Pseudomonas aeruginosa, Streptococcus mutans and fungi, like Candida albicans. Thus, studies in the area are still needed in order to prove its effectiveness in vivo, to analyze the toxicity, drug interactions and side effects of the plant.


Aghazadeh, M., et al. (2016). Survey of the Antibiofilm and Antimicrobial Effects of Zingiber officinale (in Vitro Study). Jundishapur Journal of Microbiology. 9(2), 1-4.

Avcioglu, N. H., Sahal, G., Bilkay, I. S. (2016) Antibiofilm effects of Citrus limonum and Zingiber officinale oils on biofilm formation of Klebsiella ornithinolytica, Klebsiella oxytoca and Klebsiella terrigena species. African Journal of Traditional Complementary Alternative Medicines. 13(6),61-67.

Cavalcante, R. As plantas na Odontologia:Um guia prático. (2019) (3a ed.), Cavalcante,R.

Ghasemzadeh, A., et al. (2018). Formation of 6-, 8- and 10-Shogaol in Ginger through Application of Different Drying Methods: Altered Antioxidant and Antimicrobial Activity. Molecules. 23(7),1-12.

Gregio, A. M. T., et al. (2006). Ação antimicrobiana do Zingiber officinale frente á microbiota bucal. Estudos de Biologia. 28(62), 61-66.

Gull, I., et al. (2012). Inhibitory effect of Allium sativum and Zingiber officinale extracts on clinically important drug resistance pathogenic bacteria. Annals of Clinical Microbiology and Antimicrobials. 11(8), 10-16.

Guo, T., et al. (2017). Two new monoterpenoid glycosides from the fresh rhizome of Tongling White Ginger (Zingiber officinale). Natural Product Research. 32(1), 71-76.

Hasan, S., Danishuddin, M., Khan, A. U. (2015). Inhibitory effect of Zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies. BMC Microbiology. 15(1), 1-14.

Jain, I., et al. (2015) Use of Traditional Indian Plants in the inhibition of Caries- Causing Bacteria- Streptococcus mutans-. Brazilian Dental Journal. 26(2), 110 115.

Jami, S. G., Araujo, P. D. H. (2017). Efecto antimicrobiano del extracto, aceite de jengibre (zingiber officinale) sobre cepas de enterococcus faecalis: Estudio in vitro. ODONTOLOGÍA. 19(1), 89-97.

Karuppiah, P., Rajaram, S. (2012). Antibacterial effect of Allium sativum cloves and Zingiber officinale rhizomes against multiple-drug resistant clinical pathogens. Asian Pacific Journal of Tropical Biomedicine. 2(8), 597-601.

Kim, H. S., Park, H. D. (2013) Ginger Extract Inhibits Biofilm Formation by Pseudomonas aeruginosa PA14. PLOS ONE. 8(9), 1-16.

Kumar, L., Chhibber, S., Harjai, K. (2013). Zingerone inhibit biofilm formation and improve antibiofilm efficacy of 2 ciprofloxacin against Pseudomonas aeruginosa PAO1. Fitoterapia. 90, 73-78.

Lee, J. H., et al. (2018). Antibiofilm and Antivirulence Activities of 6-Gingerol and 6-Shogaol Against Candida albicans Due to Hyphal Inhibition. Frontiers in Cellular and Infection Microbiology. 8(299), 1-10.

Marsh & Martin. Microbiologia Oral. (6a ed.), Elsevier Health Science, 2018.

Miari, et al. (2020) Natural products and polysorbates: Potential Inhibitors of biofilm formation in Pseudomonas aeruginosa. The Journal of infection Developing Countries. 14(6), 580-588.

Park, M., Jungdon, B. A. E, Dae-Sil L. E. E. (2008) Antibacterial Activity of [10]-Gingerol and [12]-Gingerol isolated from Ginger Rhizome Against Periodontal Bacteria. Phytotherapy Research. 22(11), 1446-1449.

Pereira, A. S., et al. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM.

Pozzati, P., et al.(2008). In vitro activity of essential oils extracted from plants used as spices against fluconazole-resistant and fluconazole-susceptible Candida spp. Canadian Journal of Microbiology. 54(11), 950- 956.

Rampogu, S., et al. (2018). Ginger (Zingiber officinale) phytochemicals gingerenone ‑A and shogaol inhibit SaHPPK: molecular docking, molecular dynamics simulations and in vitro approaches. Annals of Clinical Microbiology and Antimicrobials. 17(1), 1-15.

Valera, M. C., et al. (2016). Action of Chlorhexidine, Zingiber officinale on Candida albicans, Enterococcus faecalis, Escherichia coli, and Endotoxin in the Root canals. The Journal of Contemporary Dental Practice. 17(2), 114-118.



How to Cite

BRUM, N. F.; BEZERRA, M. S.; BEZERRA, A. S.; SOUZA, G. S. de .; MARQUEZAN, P. K. Antibacterial and antifungal activities herbácia Zingiber Officinale in dentistry: a literature review. Research, Society and Development, [S. l.], v. 9, n. 10, p. e6689109141, 2020. DOI: 10.33448/rsd-v9i10.9141. Disponível em: Acesso em: 8 aug. 2022.



Review Article