La distribución del ictioplancton está directamente relacionada con la hidrodinámica de una región y el comportamiento de desove de los adultos. En este estudio buscamos mapear las zonas de mayor ocurrencia de ictioplancton observadas en la Bahía de São Marcos, que tiene una de las mayores amplitudes de marea en la Costa Amazónica, Brasil. El ictioplancton fue recolectado mediante una técnica de arrastre horizontal en la capa superficial, utilizando una red de rodillos cónicos con malla de 300 μm acoplada a un medidor de flujo, para estimar el volumen de agua filtrada en la Bahía de São Marcos (Complexo Estuarino de São Marcos - CESM, Maranhão) . La densidad se calculó a partir de la relación entre el número total de huevos y larvas en cada muestra y el volumen de agua filtrada. Las fuentes de Ictioplancton se consideraron continuas y se organizaron para representar de forma asincrónica las condiciones de distribución. Para ello se realizó utilizando el polígono de Voronoi para determinar la forma espacial del área de operación de todos los puntos de muestreo. El uso de CESM, como lugar de desove y cría de larvas de peces, se verificó en todas las épocas del año, con mayor densidad de huevos en la época de lluvias y mayor densidad de larvas durante la época seca. La ubicación de las mayores densidades de ictioplancton varió, con las concentraciones más altas más cerca del canal sureste del CESM en la estación seca, moviéndose hacia el centro en la estación lluviosa. El canal sureste del CESM era, por tanto, un área de cría de muchas especies de peces, lo que requería una acción prioritaria para la protección del medio ambiente.

Authors

DOI:

https://doi.org/10.33448/rsd-v9i10.9238

Keywords:

Ichthyoplankton; Voronoi polygon; Environmental protection.

Abstract

The occurrence of ichthyoplankton is associated to the hydrodynamics and spawning behavior of adults. In this study we aimed to detect regions of concentration of ichthyoplankton in São Marcos Bay, which has macro tidal amplitudes in Amazon Coast, Brazil. Ichthyoplankton was acquired by way of drag technique, using with 300 μm mesh. The density was obtained considering the number of eggs and larvae in filtered water. The sources of Ichthyoplankton were defined continuous and organized to denote the asynchronously the distribution conditions. To this was done using Voronoi polygon to determine the spatial shape of the region of operation of all sampling points. The use of CESM, as a spawning site and breeding fish larvae, was verified at all times of the year, with a higher density of eggs in the wet period and a higher density of larvae during the dry period. The position of the higher ichthyoplankton densities varied, considering concentrations in the area at south-east channel of the CESM in the rainless period, going to the central area in the wet period. The southeast of CESM is, therefore, a nursery for fish, requiring environmental management actions.

References

Allen, John Robert Laurence, & Rae, J. E. (1987). Late Flandrian shoreline oscillations in the Severn Estuary: A geomorphological and stratigraphical reconnaissance. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 315(1171), 185–230. https://doi.org/10.1098/rstb.1987.0007

Allen, J. R. L. (1991). Fine sediment and its sources, Severn Estuary and inner Bristol Channel, southwest Britain. Sedimentary Geology, 75(1–2), 57–65. https://doi.org/10.1016/0037-0738(91)90050-N

Allen, J. R. L. (1992). Large-scale textural patterns and sedimentary processes on tidal salt marshes in the Severn Estuary, southwest Britain. Sedimentary Geology, 81(3–4), 299–318. https://doi.org/10.1016/0037-0738(92)90077-5

Araujo-Lima, C. A. R. M. (1994). Egg size and larval development in Central Amazonian fish. Journal of Fish Biology, 44(3), 371–389. https://doi.org/10.1111/j.1095-8649.1994.tb01219.x

Arthur, J. F., Ball, M. D., & Baughman, S. Y. (1996). Summary of federal and state water project environmental impacts in the San Francisco Bay-Delta Estuary, California. San Francisco State University.

Aurenhammer, F. (1991). Voronoi diagrams—A survey of a fundamental geometric data structure. ACM Computing Surveys, 23(3), 345–405. https://doi.org/10.1145/116873.116880

Barkley, R. A. (1964). The Theoretical Effectiveness of Towed-Net Samplers as Related to Sampler Size and to Swimming Speed of Organisms. ICES Journal of Marine Science, 29(2), 146–157. https://doi.org/10.1093/icesjms/29.2.146

Bennett, W. A., & Moyle, P. B. (1996). Where have all the fishes gone?: Interactive factors producing fish declines in the Sacramento-San Joaquin Estuary. San Francisco State University.

Bone, Q., Marshall, N. B., & Blaxter, J. H. S. (1995). Diversity of fishes. In Q. Bone, N. B. Marshall, & J. H. S. Blaxter, Biology of Fishes (p. 1–24). Springer US. https://doi.org/10.1007/978-1-4615-2664-3_1

Bonecker, F., Castro, M., & Bonecker, A. (2009). Larval fish assemblage in a tropical estuary in relation to tidal cycles, day/night and seasonal variations. Pan-American Journal of Aquatic Sciences, 4(2), 239–246.

Brasil, I. N. de M. (2015). Banco de Dados Meteorológicos para Ensino e Pesquisa (BDMEP), Precipitações históricas (1961 – 1990) para Ilha de São Luis. INMET; 23/10/2016. https://portal.inmet.gov.br/

Carvalho Neta, R., & Castro, A. (2008). Diversity of the estuarine fish assemblages on Crabs Island, Maranhão state. Arquivos de Ciência do Mar, 41, 48–57.

Carvalho-Neta, R. N., & Abreu-Silva, A. L. (2013). Glutathione S-Transferase as biomarker in Sciades herzbergii (Siluriformes: Ariidae) for environmental monitoring: The case study of São Marcos Bay, Maranhão, Brazil. Latin American Journal of Aquatic Research, 41(2), 217–225. https://doi.org/10.3856/vol41-issue2-fulltext-2

Carvalho-Neta, R. N. F., Torres, A. R., & Abreu-Silva, A. L. (2012). Biomarkers in Catfish Sciades herzbergii (Teleostei: Ariidae) from Polluted and Non-polluted Areas (São Marcos’ Bay, Northeastern Brazil). Applied Biochemistry and Biotechnology, 166(5), 1314–1327. https://doi.org/10.1007/s12010-011-9519-1

Chao, N. L., & McConnell, R. H. L. (1988). Ecological Studies in Tropical Fish Communities. Estuaries, 11(1), 76. https://doi.org/10.2307/1351725

Chia, F.-S., Buckland-Nicks, J., & Young, C. M. (1984). Locomotion of marine invertebrate larvae: A review. Canadian Journal of Zoology, 62(7), 1205–1222. https://doi.org/10.1139/z84-176

Chiappa-Carrara, X. (2003). Ichthyoplankton distribution as an indicator of hydrodynamic conditions of a lagoon system in the Mexican Caribbean. Journal of Plankton Research, 25(7), 687–696. https://doi.org/10.1093/plankt/25.7.687

Christie, M. R., Tissot, B. N., Albins, M. A., Beets, J. P., Jia, Y., Ortiz, D. M., Thompson, S. E., & Hixon, M. A. (2010). Larval Connectivity in an Effective Network of Marine Protected Areas. PLoS ONE, 5(12), e15715. https://doi.org/10.1371/journal.pone.0015715

Cowen, R. K. (2000). Connectivity of Marine Populations: Open or Closed? Science, 287(5454), 857–859. https://doi.org/10.1126/science.287.5454.857

dos Santos, V. F., Figueiredo Jr, A. G., da Silveira, O. F. M., Polidori, L., de Oliveira, D. M., & Dias, M. B. (2005). Processos Sedimentares em área de Macro-marés Influenciados Pela Pororoca-Estuário do Rio Araguari-Amapá-Brasil.

Fortune, S. (1992). Fast topological construction of delaunay triangulations and voronoi diagrams. Computers & Geosciences, 19(10), 1463–1474. https://doi.org/10.1016/0098-3004(93)90062-A

Geyer, W. R. (1995). Tide-induced mixing in the Amazon Frontal Zone. Journal of Geophysical Research, 100(C2), 2341. https://doi.org/10.1029/94JC02543

Godinho, A. L., Lamas, I. R., & Godinho, H. P. (2010). Reproductive ecology of Brazilian freshwater fishes. Environmental Biology of Fishes, 87(2), 143–162. https://doi.org/10.1007/s10641-009-9574-4

González-Gorbeña, E., Rosman, P. C. C., & Qassim, R. Y. (2015). Assessment of the tidal current energy resource in São Marcos Bay, Brazil. Journal of Ocean Engineering and Marine Energy, 1(4), 421–433. https://doi.org/10.1007/s40722-015-0031-5

Green, A. L., Maypa, A. P., Almany, G. R., Rhodes, K. L., Weeks, R., Abesamis, R. A., Gleason, M. G., Mumby, P. J., & White, A. T. (2015). Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biological Reviews, 90(4), 1215–1247. https://doi.org/10.1111/brv.12155

Kirby, R., & Parker, W. R. (1983). Distribution and Behavior of Fine Sediment in the Severn Estuary and Inner Bristol Channel, U.K. Canadian Journal of Fisheries and Aquatic Sciences, 40(S1), s83–s95. https://doi.org/10.1139/f83-271

Larsonneur, C. (1994). The Bay of Mont-Saint-Michel: A Sedimentation Model in a Temperate Macrotidal Environment. Kramer in Komm. https://books.google.com.br/books?id=faAVNQAACAAJ

Le Bars, Y., Lyard, F., Jeandel, C., & Dardengo, L. (2010). The AMANDES tidal model for the Amazon estuary and shelf. Ocean Modelling, 31(3–4), 132–149. https://doi.org/10.1016/j.ocemod.2009.11.001

Lowe-McConnell, R. H. (1987). Ecological Studies in Tropical Fish Communities (1o ed). Cambridge University Press. https://doi.org/10.1017/CBO9780511721892

Moriyama, A., Yanagisawa, Y., Mizuno, N., & Omori, K. (1998). Starvation of drifting goby larvae due to retention of free embryos in upstream reaches. Environmental Biology of Fishes, 52(1–3), 321–329.

Nikolʹskiĭ, G. V. (1963). The ecology of fishes. Academic press.

Parrish, R. H., Nelson, C. S., & Bakun, A. (1981). Transport mechanisms and reproductive success of fishes in the California Current. Biological Oceanography, 1(2), 175–203.

Pauly, D., Christensen, V., Guénette, S., Pitcher, T. J., Sumaila, U. R., Walters, C. J., Watson, R., & Zeller, D. (2002). Towards sustainability in world fisheries. Nature, 418(6898), 689–695. https://doi.org/10.1038/nature01017

Pereira, J. E. R., & Harari, J. (1995). Modelo numérico tri-dimensional linear da plataforma continental do Estado do Maranhão. Brazilian Journal of Oceanography, 43(1), 19–34. https://doi.org/10.1590/S1679-87591995000100002

Puebla, O. (2009). Ecological speciation in marine v. freshwater fishes. Journal of Fish Biology, 75(5), 960–996. https://doi.org/10.1111/j.1095-8649.2009.02358.x

Ribeiro, E. B., Almeida, Z. S., & Carvalho-Neta, R. N. F. (2012). Hábito alimentar do bagre Sciades herzbergii (Siluriformes, Ariidae) da Ilha dos Caranguejos, Maranhão, Brasil. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 64(6), 1761–1765. https://doi.org/10.1590/S0102-09352012000600048

Rockwell Geyer, W., Beardsley, R. C., Lentz, S. J., Candela, J., Limeburner, R., Johns, W. E., Castro, B. M., & Dias Soares, I. (1996). Physical oceanography of the Amazon shelf. Continental Shelf Research, 16(5–6), 575–616. https://doi.org/10.1016/0278-4343(95)00051-8

Rumrill, S. S. (1990). Natural mortality of marine invertebrate larvae. Ophelia, 32(1–2), 163–198. https://doi.org/10.1080/00785236.1990.10422030

Sfakiotakis, M., Lane, D. M., & Davies, J. B. C. (1999). Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 24(2), 237–252. https://doi.org/10.1109/48.757275

Shima, J. S., & Swearer, S. E. (2010). The legacy of dispersal: Larval experience shapes persistence later in the life of a reef fish: Legacy effects of dispersal. Journal of Animal Ecology, 79(6), 1308–1314. https://doi.org/10.1111/j.1365-2656.2010.01733.x

Silva, I. da, Pereira, L., de O. Guimarães, D., Trindade, W., Asp, N., & Costa, R. da. (2009). Environmental status of urban beaches in São Luís (Amazon coast, Brazil). Journal of Coastal Research, 1301–1305.

Smith, P. E., & Richardson, S. (1977). Standard techniques for pelagic. FAO Fisheries Techniques Paper, 175, 27–73.

Soares, R. de A., Junior, A. R. T., Dias, F. J. da S., & Neta, R. N. F. C. (2018). The eventual presence of freshwater of Amazonas river over the continental shelf of the state of Maranhão – Brazil. 100009. https://doi.org/10.1063/1.5079164

Souza Filho, P. W. M. (2005). Costa de manguezais de macromaré da Amazônia: Cenários morfológicos, mapeamento e quantificação de áreas usando dados de sensores remotos. Revista Brasileira de Geofísica, 23(4), 427–435. https://doi.org/10.1590/S0102-261X2005000400006

Susan Bartsch-Winkler (2), Henry R. (1984). Bedding Types in Holocene Tidal Channel Sequences, Knik Arm, Upper Cook Inlet, Alaska. SEPM Journal of Sedimentary Research, Vol. 54. https://doi.org/10.1306/212F85AD-2B24-11D7-8648000102C1865D

Susan Bartsch-Winkler, A. Thomas Ov. (1984). Macrotidal Subarctic Environment of Turnagain and Knik Arms, Upper Cook Inlet, Alaska: Sedimentology of the Intertidal Zone. SEPM Journal of Sedimentary Research, Vol. 54. https://doi.org/10.1306/212F85A8-2B24-11D7-8648000102C1865D

Warner, R. R., Swearer, S. E., & Caselle, J. E. (2000). Larval accumulation and retention: Implications for the design of marine reserves and essential habitat. Bulletin of Marine Science, 66(3), 821–830.

Wootton, R. J. (1990). Ecology of teleost fishes (2a ed.). Springer Science & Business Media.

Downloads

Published

25/10/2020

How to Cite

SOARES, R. de A. .; RIBEIRO JÚNIOR, J. C. M. .; SILVEIRA, P. C. A. da .; CARVALHO NETA, R. F. .; TORRES JUNIOR, A. R. . La distribución del ictioplancton está directamente relacionada con la hidrodinámica de una región y el comportamiento de desove de los adultos. En este estudio buscamos mapear las zonas de mayor ocurrencia de ictioplancton observadas en la Bahía de São Marcos, que tiene una de las mayores amplitudes de marea en la Costa Amazónica, Brasil. El ictioplancton fue recolectado mediante una técnica de arrastre horizontal en la capa superficial, utilizando una red de rodillos cónicos con malla de 300 μm acoplada a un medidor de flujo, para estimar el volumen de agua filtrada en la Bahía de São Marcos (Complexo Estuarino de São Marcos - CESM, Maranhão) . La densidad se calculó a partir de la relación entre el número total de huevos y larvas en cada muestra y el volumen de agua filtrada. Las fuentes de Ictioplancton se consideraron continuas y se organizaron para representar de forma asincrónica las condiciones de distribución. Para ello se realizó utilizando el polígono de Voronoi para determinar la forma espacial del área de operación de todos los puntos de muestreo. El uso de CESM, como lugar de desove y cría de larvas de peces, se verificó en todas las épocas del año, con mayor densidad de huevos en la época de lluvias y mayor densidad de larvas durante la época seca. La ubicación de las mayores densidades de ictioplancton varió, con las concentraciones más altas más cerca del canal sureste del CESM en la estación seca, moviéndose hacia el centro en la estación lluviosa. El canal sureste del CESM era, por tanto, un área de cría de muchas especies de peces, lo que requería una acción prioritaria para la protección del medio ambiente. Research, Society and Development, [S. l.], v. 9, n. 10, p. e9229109238, 2020. DOI: 10.33448/rsd-v9i10.9238. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/9238. Acesso em: 1 oct. 2022.

Issue

Section

Agrarian and Biological Sciences