Corrosion behavior and antimicrobial activity of titanium and Ti-30Ta alloy

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9361

Keywords:

Titanium; Ti-30Ta alloy; Corrosion behavior.

Abstract

The global market of dental implants is expecting to make USD 13.01 billion circulate by 2023 from USD 9.50 billion in 2018. The study of the materials to fabrication the implants has increased with the objective of extending the useful life of the material avoiding having to replace. Therefore, in this study we investigated the electrochemical behavior, wettability characterization and antimicrobial activity of titanium and the Ti-30Ta binary alloy. The titanium was cut into discs of 10 mm in diameter. The Ti-30Ta alloy was obtained from titanium and tantalum pure metals in a high purity argon atmosphere, homogenized in a vacuum at 1000ºC for 24 hours, cold -worked by a rotary swaging process and solubilized at 950 ºC for 2 hours followed by water cooling. Then, the bars were cut into discs. Corrosion resistance tests evaluated the electrochemical behavior, the wettability of the substrate surfaces was investigated using a sessile drop method and the biofilm formation was investigated by of S epidermidis. This study aims to investigate the corrosion resistance of Ti cp and the Ti-30Ta alloy at electrolyte solution NaCl 0,15M + NaF 0,03M and tested biofilm formation. From the results obtained, we concluded that the electrochemical behavior of both surfaces shows good resistance to corrosion solution and hydrophilic (< 90 °) behavior. However, the Ti-30Ta alloy decreases the adhesion of S epidermidis bacteria.

References

Abdeen, D. H., El Hachach, M., Koc, M., & Atieh, M. A. (2019, January). A review on the corrosion behaviour of nanocoatings on metallic substrates. Materials. MDPI AG. https://doi.org/10.3390/ma12020210

Brånemark, R., Öhrnell, L. O., Nilsson, P., & Thomsen, P. (1997). Biomechanical characterization of osseointegration during healing: An experimental in vivo study in the rat. Biomaterials, 18(14), 969–978. https://doi.org/10.1016/S0142-9612(97)00018-5

Brinemark, P., Engstrand, P., Ohmell, L., & Grondahl, K. (1999). Branemak Novum: A new concept for Rehabilitation of the Edentulous Mandible. Preliminary Results from a Prospective Clinical. Clinical Implant Dentistry and Related Research.

Capellato, P., Smith, B. S., Popat, K. C., & Alves Claro, A. P. R. (2015). Cellular functionality on nanotubes of Ti-30Ta alloy. Materials Science Forum (Vol. 805). https://doi.org/10.4028/www.scientific.net/MSF.805.61

Capellato, P., Smith, B. S., Popat, K. C., & Claro, A. P. R. A. (2012). Fibroblast functionality on novel Ti30Ta nanotube array. Materials Science and Engineering C, 32(7). https://doi.org/10.1016/j.msec.2012.05.013

Capellato, P., Escada, A. L. A. A. L. A., Popat, K. C. K. C., & Claro, A. P. R. A. A. P. R. A. (2014). Interaction between mesenchymal stem cells and Ti-30Ta alloy after surface treatment. Journal of Biomedical Materials Research - Part A, 102(7), 2147–2156. https://doi.org/10.1002/jbm.a.34891

Capellato, P., Riedel, N. A., Williams, J. D., Machado, J. P. B., Popat, K. C., & Claro, A. P. R. A. (2013). Surface Modification on Ti-30Ta Alloy for Biomedical Application. Engineering, 05(09), 707–713. https://doi.org/10.4236/eng.2013.59084

Capellato, P., Silva, G., Popat, K., Simon‐Walker, R., Alves Claro, A. P., & Zavaglia, C. (2020). Cell investigation of Adult Human dermal fibroblasts on PCL nanofibers/TiO 2 nanotubes Ti‐30Ta alloy for biomedical application. Artificial Organs, aor.13713. https://doi.org/10.1111/aor.13713

Souza, K. A., & Robin, A. (2003). Preparation and characterization of Ti-Ta alloys for application in corrosive media. Materials Letters, 57(20), 3010–3016. https://doi.org/10.1016/S0167-577X(02)01422-2

Dental Implants Market Size & Share - Global Forecast to 2023 | Growing at a CAGR of 6.5% | MarketsandMarkets.

Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Progress in Materials Science, 54(3), 397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

Gill, P., Munroe, N., Pulletikurthi, C., Pandya, S., Haider, W. (2011). Effect of Manufacturing Process on the Biocompatibility and Mechanical Properties of Ti-30Ta Alloy. J. of Materi Eng and Perform 20, 819–823. https://doi.org/10.1007/s11665-011-9874-7

Jiang, X., Yao, Y., Tang, W., Han, D., Zhang, L., Zhao, K., … Meng, Y. (2020). Design of dental implants at materials level: An overview. Journal of Biomedical Materials Research - Part A. John Wiley and Sons Inc. https://doi.org/10.1002/jbm.a.36931

Kashi, A., & Saha, S. (2010). 12 - Mechanisms of failure of medical implants during long-term use A2 - Sharma, Chandra P. BT - Biointegration of Medical Implant Materials. Woodhead Publishing Series in Biomaterials, (January), 326–348. https://doi.org/https://doi.org/10.1533/9781845699802.3.326

Kaur, M., & Singh, K. (2019). Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering: C, 102, 844–862. https://doi.org/10.1016/J.MSEC.2019.04.064

Kulkarni, M., Mazare, A., Gongadze, E., Perutkova, Kralj-Iglic, V., Milošev, I., … Mozetič, M. (2015). Titanium nanostructures for biomedical applications. Nanotechnology, 26(6). https://doi.org/10.1088/0957-4484/26/6/062002

Malhotra, R., Dhawan, B., Garg, B., Shankar, V., & Nag, T. C. (2019). A comparison of bacterial adhesion and biofilm formation on commonly used orthopaedic metal implant materials: An In vitro study. Indian journal of orthopaedics, 53(1), 148. https://doi.org/10.4103/ortho.IJOrtho_66_18

Manam, N. S., Harun, W. S. W., Shri, D. N. A., Ghani, S. A. C., Kurniawan, T., Ismail, M. H., & Ibrahim, M. H. I. (2017). Study of corrosion in biocompatible metals for implants: A review. Journal of Alloys and Compounds, 701, 698–715. https://doi.org/10.1016/j.jallcom.2017.01.196

Mareci, D., Chelariu, R., Gordin, D. M., Ungureanu, G., & Gloriant, T. (2009). Comparative corrosion study of Ti-Ta alloys for dental applications. Acta Biomaterialia, 5(9), 3625–3639. https://doi.org/10.1016/j.actbio.2009.05.037

Mendis, S., Xu, W., Tang, H. P., Jones, L. A., Liang, D., Thompson, R., … Qian, M. (2020). Characteristics of oxide films on Ti-(10–75)Ta alloys and their corrosion performance in an aerated Hank’s balanced salt solution. Applied Surface Science, 506(December 2019). https://doi.org/10.1016/j.apsusc.2019.145013

Niinomi, M. (1998). Mechanical properties of biomedical titanium alloys. Materials Science and Engineering: A, 243(1), 231–236. https://doi.org/10.1016/S0921-5093(97)00806-X

Pandey, A., Awasthi, A., & Saxena, K. K. (2020). Metallic implants with properties and latest production techniques: a review. Advances in Materials and Processing Technologies, 1–36. https://doi.org/10.1080/2374068X.2020.1731236

Verma, R. P. (2020). Materials Today : Proceedings Titanium based biomaterial for bone implants : A mini review. Materials Today: Proceedings, (xxxx), 2–5. https://doi.org/10.1016/j.matpr.2020.02.649

Zhou, Y. L., & Niinomi, M. (2008). Microstructures and mechanical properties of Ti-50 mass% Ta alloy for biomedical applications. Journal of Alloys and Compounds, 466(1–2), 535–542. https://doi.org/10.1016/j.jallcom.2007.11.090

Zhou, Y. L., Niinomi, M., & Akahori, T. (2004). Effects of Ta content on Young’s modulus and tensile properties of binary Ti-Ta alloys for biomedical applications. Materials Science and Engineering A, 371(1–2), 283–290. https://doi.org/10.1016/j.msea.2003.12.011

Zhou, Y. L., Niinomi, M., Akahori, T., Fukui, H., & Toda, H. (2005). Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications. Materials Science and Engineering A, 398(1–2), 28–36. https://doi.org/10.1016/j.msea.2005.03.032

Zimmerli, W., & Sendi, P. (2011). Pathogenesis of implant-associated infection: the role of the host. In Seminars in immunopathology, 33(3), 295-306. Springer-Verlag. https://doi.org/10.1007/s00281-011-0275-7

Downloads

Published

08/11/2020

How to Cite

CAPELLATO, P.; NOVAKOSKI, M. da S. .; VASCONCELOS, L. V. B. .; RIBEIRO, T. A. N. .; MELO, M. de L. N. M. .; SILVA, G.; NAKAZATO, R. Z. .; RANIERI, M. G. A. .; CLARO, A. P. R. A. .; SACHS, D. Corrosion behavior and antimicrobial activity of titanium and Ti-30Ta alloy. Research, Society and Development, [S. l.], v. 9, n. 11, p. e1709119361, 2020. DOI: 10.33448/rsd-v9i11.9361. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/9361. Acesso em: 18 apr. 2024.

Issue

Section

Exact and Earth Sciences