Benefits of Epidermal Growth Factor (EGF) associated with LED photobiomodulation therapy in tissue repair of skin wounds




Epidermal growth factor; Photobiomodulation therapy; Light emitting diode; Wound healing; Rehabilitation.


Cutaneous wound can be defined as the loss of continuity of the integument and due to its high incidence of chronicity, it generates a significant clinical and socioeconomic impact on the health system. The Epidermal Growth Factor (EGF) and light emitting diode (LED) photobiomodulation therapy (PBMT) have been shown to be promising therapeutic strategies with good results for skin repair. Thus, the aim of this study is to provide, through a narrative review, an understanding of the current evidence available on the importance of EGF and PBMT to LED in tissue repair of skin wounds. The searches were performed in the bibliographic databases of PubMed / MEDLINE, Virtual Health Library (VHL), Web of Science and SciELO. The evidence found in this study reports that both EGF and PBMT to LED are effective in reducing the inflammatory process, increasing the number of fibroblasts, collagen deposition, formation of new blood vessels and in the dermis-like tissue area, as well as stimulating re-epithelialization of the wound. Thus, we can conclude that EGF and PBMT to LED are effective in modulating the inflammatory process and stimulating factors that optimize wound repair, and can be promising resources in the clinical treatment of skin wounds.

Author Biographies

Márcia Busanello-Costa, Universidade Federal de São Paulo

Fisioterapeuta, Mestranda pelo Programa de Pós Graduação em Bioprodutos e Bioprocessos - UNIFESP

Lívia Assis, Universidade Brasil

Professor of Biomedical Engineering, University Brasil, São Paulo, SP, Brazil


Ablon G. (2018). Phototherapy with Light Emitting Diodes: Treating a Broad Range of Medical and Aesthetic Conditions in Dermatology. The Journal of clinical and aesthetic dermatology, 11 (2), 21–27.

Adler, M., Mayo, A., Zhou, X., Franklin, R. A., Meizlish, M. L., Medzhitov, R., Kallenberger, S. M., & Alon, U. (2020). Principles of Cell Circuits for Tissue Repair and Fibrosis. Obtido em

Anders, J. J., Lanzafame, R. J., & Arany, P. R. (2015). Low-level light/laser therapy versus photobiomodulation therapy. Photomedicine and laser surgery, 33(4), 183–184. Obtido em

Arda, O., Göksügür, N., & Tüzün, Y. (2014). Basic histological structure and functions of facial skin. Clinics in dermatology, 32(1), 3–13. Obtido em

Balbino, C. A., Pereira, L. M., & Curi, R. (2005). Mecanismos envolvidos na cicatrização: uma revisão. Revista brasileira de ciências farmacêuticas, 41 (1), 27-51.

Barolet D. (2008). Light-emitting diodes (LEDs) in dermatology. Seminars in cutaneous medicine and surgery, 27(4), 227–238. Obtido em

Berlanga-Acosta, J., Gavilondo-Cowley, J., López-Saura, P., González-López, T., Castro-Santana, M. D., López-Mola, E., Guillén-Nieto, G., & Herrera-Martinez, L. (2009). Epidermal growth factor in clinical practice - a review of its biological actions, clinical indications and safety implications. International wound journal, 6 (5), 331–346. Obtido em

Borena, B. M., Martens, A., Broeckx, S. Y., Meyer, E., Chiers, K., Duchateau, L., & Spaas, J. H. (2015). Regenerative Skin Wound Healing in Mammals: State-of-the-Art on Growth Factor and Stem Cell Based Treatments. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 36 (1), 1–23. Obtido em

Bowers, S., & Franco, E. (2020). Chronic Wounds: Evaluation and Management. American family physician, 101 (3), 159–166.

Boyko, T. V., Longaker, M. T., & Yang, G. P. (2018). Review of the Current Management of Pressure Ulcers. Advances in wound care, 7 (2), 57–67. Obtido em

Bui, T. Q., Bui, Q., Németh, D., Hegyi, P., Szakács, Z., Rumbus, Z., Tóth, B., Emri, G., Párniczky, A., Sarlós, P., & Varga, O. (2019). Epidermal Growth Factor is Effective in the Treatment of Diabetic Foot Ulcers: Meta-Analysis and Systematic Review. International journal of environmental research and public health, 16 (14), 2584. Obtido em

Cestari, S. C. P. (2012). Dermatologia pediátrica. São Paulo: Atheneu.

Chaves, M. E., Araújo, A. R., Piancastelli, A. C., & Pinotti, M. (2014). Effects of low-power light therapy on wound healing: LASER x LED. Anais brasileiros de dermatologia, 89 (4), 616–623. Obtido em

Childs, D. R., & Murthy, A. S. (2017). Overview of Wound Healing and Management. The Surgical clinics of North America, 97 (1), 189-207. Obtido em

Chung, H., Dai, T., Sharma, S. K., Huang, Y. Y., Carroll, J. D., & Hamblin, M. R. (2012). The nuts and bolts of low-level laser (light) therapy. Annals of biomedical engineering, 40 (2), 516–533. Obtido em

Cohen S. (1962). Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. The Journal of biological chemistry, 237, 1555–1562.

Corazza, A. V., Jorge, J., Kurachi, C., & Bagnato, V. S. (2007). Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomedicine and laser surgery, 25(2), 102–106. Obtido em

Campos, D. da S. ., Morais, J. P., Tim, C. R., Gomes, J. C. ., & Assis, L. . (2020). Implications for the use of ozone (O3) in the adjuvant treatment of COVID-19. Research, Society and Development, 9(9), e579997508.

Demidova-Rice, T. N., Hamblin, M. R., & Herman, I. M. (2012). Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Advances in skin & wound care, 25 (7), 304–314. Obtido em

Duim, E., Sá, F. H., Duarte, Y. A., Oliveira, R., & Lebrão, M. L. (2015). Prevalence and characteristics of lesions in elderly people living in the community. Prevalência e características das feridas em pessoas idosas residentes na comunidade. Revista da Escola de Enfermagem da U S P, 49 Spec No, 51–57. Obtido em

de Sousa, A. P., Santos, J. N., Dos Reis, J. A., Jr, Ramos, T. A., de Souza, J., Cangussú, M. C., & Pinheiro, A. L. (2010). Effect of LED phototherapy of three distinct wavelengths on fibroblasts on wound healing: a histological study in a rodent model. Photomedicine and laser surgery, 28 (4), 547–552. Obtido em

Eming, S. A., Martin, P., & Tomic-Canic, M. (2014). Wound repair and regeneration: mechanisms, signaling, and translation. Science translational medicine, 6 (265), 265sr6. Obtido em

Esquirol-Caussa, J., & Herrero-Vila, E. (2019). Human recombinant epidermal growth factor in skin lesions: 77 cases in EPItelizando project. The Journal of dermatological treatment, 30 (1), 96–101. Obtido em

Ferreira, J. B., de Carvalho, T. D. L. L., de Sousa, N. A., Guimarães, M. M., Ferreira, Z. A. B., & Pinheiro, L. M. G. (2018). Efeito dos fatores de crescimento na cicatrização do pé diabético: uma revisão de literatura. Revista InterScientia, 6 (2), 40-50.

Gainza, G., Bonafonte, D. C., Moreno, B., Aguirre, J. J., Gutierrez, F. B., Villullas, S., Pedraz, J. L., Igartua, M., & Hernandez, R. M. (2015). The topical administration of rhEGF-loaded nanostructured lipid carriers (rhEGF-NLC) improves healing in a porcine full-thickness excisional wound model. Journal of controlled release: official journal of the Controlled Release Society, 197, 41–47. Obtido em

Gomez-Villa, R., Aguilar-Rebolledo, F., Lozano-Platonoff, A., Teran-Soto, J. M., Fabian-Victoriano, M. R., Kresch-Tronik, N. S., Garrido-Espíndola, X., Garcia-Solis, A., Bondani-Guasti, A., Bierzwinsky-Sneider, G., & Contreras-Ruiz, J. (2014). Efficacy of intralesional recombinant human epidermal growth factor in diabetic foot ulcers in Mexican patients: a randomized double-blinded controlled trial. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society, 22 (4), 497–503. Obtido em

Gurtner, G. C., Werner, S., Barrandon, Y., & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453 (7193), 314–321. Obtido em

Hamblin M. R. (2016). Photobiomodulation or low-level laser therapy. Journal of biophotonics, 9 (11-12), 1122–1124. Obtido em

Hardwicke, J., Schmaljohann, D., Boyce, D., & Thomas, D. (2008). Epidermal growth factor therapy and wound healing--past, present and future perspectives. The surgeon : journal of the Royal Colleges of Surgeons of Edinburgh and Ireland, 6 (3), 172–177. Obtido em

Harris, m.i.n.c. Pele: do nascimento à maturidade. 1ªed. São Paulo: Senac -São Paulo, p.15-39.2016.

Heiskanen, V., & Hamblin, M. R. (2018). Photobiomodulation: lasers vs. light emitting diodes?. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 17 (8), 1003–1017. Obtido em

Isaac, C., de Ladeira, P. R. S., do Rêgo, F. M. P., Aldunate, J. C. B., & Ferreira, M. C. (2010). Processo de cura das feridas: cicatrização fisiológica. Revista de Medicina, 89 (3-4), 125-131.

Jagdeo, J., Austin, E., Mamalis, A., Wong, C., Ho, D., & Siegel, D. M. (2018). Light-emitting diodes in dermatology: A systematic review of randomized controlled trials. Lasers in surgery and medicine, 50 (6), 613–628. Advance online publication. Obtido em

Järbrink, K., Ni, G., Sönnergren, H., Schmidtchen, A., Pang, C., Bajpai, R., & Car, J. (2016). Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review. Systematic reviews, 5 (1), 152. Obtido em

Karu, T. I., Pyatibrat, L. V., & Kalendo, G. S. (2004). Photobiological modulation of cell attachment via cytochrome c oxidase. Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology, 3 (2), 211–216. Obtido em

Kerppers, I. I., de Lima, C. J., Fernandes, A. B., & Villaverde, A. B. (2015). Effect of light-emitting diode (ʎ 627 nm and 945 nm ʎ) treatment on first intention healing: immunohistochemical analysis. Lasers in medical science, 30 (1), 397–401. Obtido em

Khanbanha, N., Atyabi, F., Taheri, A., Talaie, F., Mahbod, M., & Dinarvand, R. (2014). Healing efficacy of an EGF impregnated triple gel based wound dressing: in vitro and in vivo studies. BioMed research international, 2014, 493732. Obtido em

Kim, W. S., & Calderhead, R. G. (2011). Is light-emitting diode phototherapy (LED-LLLT) really effective?. Laser therapy, 20 (3), 205–215. Obtido em

Kim, Y. S., Lew, D. H., Tark, K. C., Rah, D. K., & Hong, J. P. (2010). Effect of recombinant human epidermal growth factor against cutaneous scar formation in murine full-thickness wound healing. Journal of Korean medical science, 25 (4), 589–596. Obtido em

Kumar, Vinay; abbas, Abul K.; Aster, Jon C.: Robbins Patologia Básica. 9ª. Ed. Rio de Janeiro: Elsevier, c.2, p.29-72. 2013.

Lai-Cheong, J. E., & McGrath, J. A. (2013). Structure and function of skin, hair and nails. Medicine, 41 (6), 317-320. Obtido em

Laiva, A. L., O'Brien, F. J., & Keogh, M. B. (2018). Innovations in gene and growth factor delivery systems for diabetic wound healing. Journal of tissue engineering and regenerative medicine, 12 (1), e296–e312.

Leite, S. N., Andrade, T. A., Masson-Meyers, D., Leite, M. N., Enwemeka, C. S., & Frade, M. A. (2014). Phototherapy promotes healing of cutaneous wounds in undernourished rats. Anais brasileiros de dermatologia, 89 (6), 899–904. Obtido em

Macedo, D. B., Tim R. C., Macedo, J. B. S. C., Macedo, G. M., Martignago, C. C. S., & Assis, L. (2020). Therapeutic perspective of light for coronavirus treatment. Research, Society and Development, 9(8), e766986320.

Martignago, C., Tim, C. R., Assis, L., Da Silva, V. R., Santos, E., Vieira, F. N., Parizotto, N. A., & Liebano, R. E. (2020). Effects of red and near-infrared LED light therapy on full-thickness skin graft in rats. Lasers in medical science, 35 (1), 157–164. Obtido em

Mosca, R. C., Ong, A. A., Albasha, O., Bass, K., & Arany, P. (2019). Photobiomodulation Therapy for Wound Care: A Potent, Noninvasive, Photoceutical Approach. Advances in skin & wound care, 32 (4), 157–167. Obtido em

Nanney L. B. (1990). Epidermal and dermal effects of epidermal growth factor during wound repair. The Journal of investigative dermatology, 94 (5), 624–629.

Nishioka, M. A., Pinfildi, C. E., Sheliga, T. R., Arias, V. E., Gomes, H. C., & Ferreira, L. M. (2012). LED (660 nm) and laser (670 nm) use on skin flap viability: angiogenesis and mast cells on transition line. Lasers in medical science, 27 (5), 1045–1050. Obtido em

Oliveira, F. P., Oliveira, B. G., Santana, R. F., Silva, B., & Candido, J. (2016). Nursing interventions and outcomes classifications in patients with wounds: cross-mapping. Classificações de intervenções e resultados de enfermagem em pacientes com feridas: mapeamento cruzado. Revista gaucha de enfermagem, 37 (2), e55033.

Park, J. W., Hwang, S. R., & Yoon, I. S. (2017). Advanced Growth Factor Delivery Systems in Wound Management and Skin Regeneration. Molecules (Basel, Switzerland), 22 (8), 1259. Obtido em

Park, K. H., Han, S. H., Hong, J. P., Han, S. K., Lee, D. H., Kim, B. S., Ahn, J. H., & Lee, J. W. (2018). Topical epidermal growth factor spray for the treatment of chronic diabetic foot ulcers: A phase III multicenter, double-blind, randomized, placebo-controlled trial. Diabetes research and clinical practice, 142, 335–344. Obtido em

Pyun, D. G., Choi, H. J., Yoon, H. S., Thambi, T., & Lee, D. S. (2015). Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: Synthesis, characterization, in vitro and in vivo studies. Colloids and surfaces. B, Biointerfaces, 135, 699–706. Obtido em

Junqueira ,L.C.U. & Carneiro, J. Histologia Básica. 12ª Ed. Rio de Janeiro: Guanabara Koogan, p. 85-107, 2013.

Reinke, J. M., & Sorg, H. (2012). Wound repair and regeneration. European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes, 49 (1), 35–43. Obtido em

Rezaie, F., Momeni-Moghaddam, M., & Naderi-Meshkin, H. (2019). Regeneration and Repair of Skin Wounds: Various Strategies for Treatment. The international journal of lower extremity wounds, 18 (3), 247–261. Obtido em

Rivitti, Evandro A. Manual de Dermatologia Clinica de Sampaio e Rivitti. São Paulo: Artes Médicas, v.1, p. 2-15.2014.

Rotta, O. Guias de medicina ambulatorial e hospitalar da Unifesp-EPM: Dermatologia Clínica, cirúrgica e cosmiátrica. São Paulo: Manole, 2008.

Sen, C. K., Gordillo, G. M., Roy, S., Kirsner, R., Lambert, L., Hunt, T. K., Gottrup, F., Gurtner, G. C., & Longaker, M. T. (2009). Human skin wounds: a major and snowballing threat to public health and the economy. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society, 17 (6), 763–771. Obtido em

Simões, T., Fernandes Neto, J. A., de Oliveira, T., Nonaka, C., & Catão, M. (2020). Photobiomodulation of red and green lights in the repair process of third-degree skin burns. Lasers in medical science, 35 (1), 51–61. Obtido em

Shpichka, A., Butnaru, D., Bezrukov, E. A., Sukhanov, R. B., Atala, A., Burdukovskii, V., Zhang, Y., & Timashev, P. (2019). Skin tissue regeneration for burn injury. Stem cell research & therapy, 10 (1), 94. Obtido em

Sridharan, K., & Sivaramakrishnan, G. (2018). Growth factors for diabetic foot ulcers: mixed treatment comparison analysis of randomized clinical trials. British journal of clinical pharmacology, 84 (3), 434–444. Obtido em

Szwed, D. N., & dos Santos, V. L. P. (2016). Fatores de crescimento envolvidos na cicatrização de pele. Cadernos da Escola de Saúde, 1 (15).

Tortora, G. J., & Derrickson, B. (2016). Corpo Humano-: Fundamentos de Anatomia e Fisiologia-10ª Edição. Porto Alegre. Artmed

VanPutte, C., Regan, J., & Russo, A. (2016). Anatomia e Fisiologia de Seeley-10ª Edição. Porto Alegre. McGraw Hill Brasil.

Vinck, E. M., Cagnie, B. J., Cornelissen, M. J., Declercq, H. A., & Cambier, D. C. (2003). Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers in medical science, 18 (2), 95–99. Obtido em

Vinck, E., Coorevits, P., Cagnie, B., De Muynck, M., Vanderstraeten, G., & Cambier, D. (2005). Evidence of changes in sural nerve conduction mediated by light emitting diode irradiation. Lasers in medical science, 20 (1), 35–40. Obtido em

Wong, R., Geyer, S., Weninger, W., Guimberteau, J. C., & Wong, J. K. (2016). The dynamic anatomy and patterning of skin. Experimental dermatology, 25 (2), 92–98. Obtido em

Xie, Z., Paras, C. B., Weng, H., Punnakitikashem, P., Su, L. C., Vu, K., Tang, L., Yang, J., & Nguyen, K. T. (2013). Dual growth factor releasing multi-functional nanofibers for wound healing. Acta biomaterialia, 9 (12), 9351–9359. Obtido em

Yang, Q., Zhang, Y., Yin, H., & Lu, Y. (2020). Topical Recombinant Human Epidermal Growth Factor for Diabetic Foot Ulcers: A Meta-Analysis of Randomized Controlled Clinical Trials. Annals of vascular surgery, 62, 442–451. Obtido em

Yousef, H., Alhajj, M., & Sharma, S. (2020). Anatomy, Skin (Integument), Epidermis. In StatPearls. StatPearls Publishing.

Zhang, S., & Uludağ, H. (2009). Nanoparticulate systems for growth factor delivery. Pharmaceutical research, 26 (7), 1561–1580. Obtido em



How to Cite

BUSANELLO-COSTA, M.; RENNÓ, A. C. M. .; MARTIGNAGO, C. C. S. .; TIM, C. R. .; MUNIZ, T. M. Q. .; MARCELINO, C. C. C. .; ASSIS, L. . Benefits of Epidermal Growth Factor (EGF) associated with LED photobiomodulation therapy in tissue repair of skin wounds. Research, Society and Development, [S. l.], v. 9, n. 10, p. e9909109369, 2020. DOI: 10.33448/rsd-v9i10.9369. Disponível em: Acesso em: 25 jun. 2022.



Health Sciences