Grain maceration of Chenopodium quinoa Willd: effect of time and temperature

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.9483

Keywords:

Quinoa; Physicochemical characterization; Water absorption.

Abstract

Quinoa has aroused worldwide interest for its high nutritional value, especially in relation to protein content. Therefore, the objective of this study was to evaluate the effect of time and temperature on the maceration of quinoa in order to obtain greater submersion with less loss of grain proteins. To characterize the quinoa grains, the material was crushed and subjected to moisture, protein, lipid and ash analysis. To evaluate time and temperature, the grains were macerated at three different temperatures (5 ºC, 25 ºC and 45 ºC) in a 1:2 ratio (quinoa: water) for 48 hours. Samples of the maceration water were subjected to analysis of hydrogen potential, protein determination, acidity and water absorption. The experiment was carried out in a Subdivided Plot Design with the temperature in the plot (3 levels - 5 °C, 25 °C and 45 °C) with three repetitions and the maceration time in the subplot (9 levels - 9 times). All analysis were performed in duplicate. Regarding the results obtained, quinoa can be considered a food with a high protein content (14.35%). Note that the migration of proteins to the maceration water is greater at a temperature of 45 °C. The results for the behavior of pH and acidity show that there was fermentation at temperatures of 25 ºC and 45 °C. The mass gain is independent of the temperature and reached a maximum waterlogging point around 16 hours. So it is recommended to macerate the quinoa at a temperature of 5 °C for 16 hours.

References

Aceituno-Medina, M., Lopez-Rubio, A., Mendoza, S., Lagaron, J.M. (2013). Development of novel ultrathin structures based in amaranth (Amaranthus hypochondriacus) protein isolate through electrospinning. Food Hydrocolloids, 31, 289–298.

Amistá, M. J. M., Tavano, O. L. (2013). The effect of germination and heat treatment on the protein digestibility and trypsin inhibition activity of quinoa grains. Brazilian Journal of Food Technology, 16(1), 52-58.

Balbi, E. M., Oliveira, K., Chiquito, R. F. Análise da composição química e nutricional da quinoa. Visão Acadêmica, Curitiba, 15(2).

Benassi, V. T., Benassi, M. T., Prudencio, S. H. Cultivares brasileiras de soja: características para a produção de tofu e aceitação pelo mercado consumidor. Seminário: Ciências Agrárias, Londrina, v. 32, suplemento 1, 1901-1914, 2011.

Bewley, D. J., Bradford, K. J., Hilhorst, H. W. M., Nonogaki, H. (2013). Seeds: Physiology of Development, Germination and Dormancy. (3a ed.), Nova York, Springer.

Brakez, M., Daoud, S., Harrouni, M. C., Tachbibi, N., Brakez, Z. (2016). Nutritional value of Chenopodium quinoa seeds obtained from an open field culture under saline conditions. In Khan, M. A., Bilquees, M. O., Muhammad, G., Ahmed, Z. (Ed.), Halophytes for Food Security in Dry Lands, 37–47. Academic Press.

Brasil. Ministério da Saúde - MS. Agência Nacional de Vigilância Sanitária. Portaria nº 27, de 13 de janeiro de 1998. Regulamento Técnico referente à informação nutricional complementar. Diário Oficial da União, Brasília, 16 de janeiro de 1998.

Ciabotti, S., Barcellos, M. F. P., Mandarino, J. M. G., Tarone, A. G. (2006). Chemical and biochemical evaluation of grains, soymilk and tofus of normal soybean and lipoxygenase-free soybeans. Ciência e Agrotecnologia, 30(5), 920-929.

Fernandes, D. C., Souza, E. M. Naves, M. M. V. (2011). Soaking beans: alternative to improve nutritional value. Semina: Ciências Biológicas e da Saúde, 32(2), 177-184.

Fiorito, S., Preziuso, F., Epifano, F., Scotti, L., Bucciarelli, T., Taddeo, V.A., Genovese, S. (2019). Novel biologically active principles from spinach, goji and quinoa. Food Chemistry, 276, 262-265.

Föste, M., Elgeti, D., Brunner, A-K., Jekle, M., Becker, T. (2015). Isolation of quinoa protein by milling fractionation and solvent extraction. Food and Bioproducts Processing, 96, 20-26.

Gewehr, M. F. (2012). Análises químicas em flocos de quinoa: caracterização para a utilização em produtos alimentícios. Brazilian Journal of Food Technology, 15(4), 280-287.

Instituto Adolfo Lutz. Normas Analíticas do Instituto Adolfo Lutz. (4a ed.), São Paulo, 2008. 1020 p.

Itzhaki, R. F., Gill, D. M. (1964). A micro-biuret method for estimating proteins. Analytical Biochemistry, 9(4), 401 – 410.

Kanensi, O. J., Ochola, S., Gikonyo, N. K., Makokha, A. (2011). Optimization of the period of steeping and germination for amaranth grain. Journal of Agriculture and Food Technology, 1(6), 101–105.

Kuljanabhagavad, T., Thongphasuk, P., Chamulitrat, W., Wink, M. (2008). Triterpene saponins from Chenopodium quinoa Willd. Phytochemistry, 69(9), 1919-1926.

Küster, I., Vila, N. (2017). Health/Nutrition food claims and low-fat food purchase: Projected personality influence in young consumers. Journal of Functional Foods, 38, 66–76.

Li, G., Wang, S., Zhu, F. (2016). Physicochemical properties of quinoa starch. Carbohydrate Polymers, 137, 328–338.

Martinez, O. D. M., Toledo, R. C. L., Queiroz, V. A. V., Pirozi, M. R., Martino, H. S. D., Barros, F. A. R. (2020). Mixed sorghum and quinoa flour improves protein quality and increases antioxidant capacity in vivo. LWT - Food Science and Technology, 129, 109597.

Mota, C., Nascimento, A. C., Coelho, I., Gueifão, S., Santos, M., Torres, D., Castanheira, I. (2015). Estudos de caracterização do perfil nutricional da Quinoa (Chenopodium quinoa): macronutrientes, minerais e elementos vestigiais. Composição de Alimentos e Nutrição, [s.i.], 5(2), 30-32.

Mufari, J. R., Miranda-Villa, P. P., Calandri, E. L., (2018). Quinoa germ and starch separation by wet milling, performance and characterization of the fractions. LWT - Food Science and Technology, 96, 527-534.

Paz, P. C., Janny, R. J., Håkansson, Å. (2020). Safeguarding of quinoa beverage production by fermentation with Lactobacillus plantarum DSM 9843. International Journal of Food Microbiology, 324, 108630.

Pereira, E., Cadavez, V., Barros, L., Encina-Zelada, C., Stojković, D., Sokovic, M., Calhelha, R.C., Gonzales-Barron, U., Ferreira, I.C.F.R. (2020). Chenopodium quinoa Willd. (quinoa) grains: A good source of phenolic compounds. Food Research International, 137, 109574.

Pineli, L. L. O., Botelho, R. B. A., Zandonadi, R. P., Solorzano, J. L., Oliveira, G. T., Reis, C. E. G., Teixeira, D. S. (2015). Low glycemic index and increased protein content in a novel quinoa milk. LWT - Food Science and Technology, 63, 1261-1267.

Repo-Carrasco, R., Espinoza, C., Jacobsen, S. E. (2003). Nutritional value and use of the andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Reviews International, 19 (1–2), 179–189.

Salcedo-Chávez, B., Osuna-Castro, J. A., Guevara-Lara, F., Domínguez-Domínguez, J., Paredes-López, O. (2002). Optimization of the isoelectric precipitation method to obtain protein isolates from amaranth (Amaranthus cruentus) seeds. Journal of Agricultural and Food Chemistry, 50(22), 6515–6520.

Santos, H. V., Maia, C. J. S., Lima, E. J. F., Dias, A. C. C., Monteiro, R. S., Gandra, K. M. B., Cunha, L. R., Pereira, P. A. P. (2020). Physical, physicochemical, microbiological, and bioactive compounds stability of low-calorie orange jellies during storage: packaging effect. Research, Society and Development, 9(9), e759997900.

Shi, J., Xué, S. J., Mab, Y., Li, D., Kakuda, Y., Lan, Y. (2009). Kinetic study of saponins B stability in navy beans under different processing conditions. Journal of Food Engineering, 93(1), 59-65.

Solaesa, A. G., Villanueva, M., Vela, A. J., Ronda, F. (2020). Protein and lipid enrichment of quinoa (cv.Titicaca) by dry fractionation. Techno-functional, thermal and rheological properties of milling fractions. Food Hydrocolloids, 105, 105770.

Spehar, C. A. (2006). Adaptation of quinoa (Chenopodium quinoa Willd.) to increase the agricultural and alimentary diversity in Brazil. Cadernos de Ciência & Tecnologia, 23(1), 41-62.

Tang, Y., Tsao, R. (2017). Phytochemicals in quinoa and amaranth grains and their antioxidant, antiinflammatory, and potential health beneficial effects: a review. Molecular Nutrition & Food Research, 61(7), 1600767.

Van de Vondel, J., Lambrecht, M.A., Delcour, J.A. (2020). Osborne extractability and chromatographic separation of protein from quinoa (Chenopodium quinoa Willd.) wholemeal. LWT - Food Science and Technology, 126, 109321.

Vidueiros, S. M., Curti, R. N., Dyner, L. M., Binaghi, M. J., Peterson, G., Bertero, H. D., Pallaro, A. N. (2015). Diversity and interrelationships in nutritional traits in cultivated quinoa (Chenopodium quinoa Willd.) from Northwest Argentina. Journal of Cereal Science, 62, 87-93.

Vizzotto, M., Pereira, M. C. (2011). Blackberry (Rubus sp.): extraction process optimization and determination of phenolic compounds antioxidants. Revista Brasileira de Fruticultura, 33(4), 1209-1214.

Published

03/11/2020

How to Cite

NEVES , Érica G. F. .; BARBOSA , J. C. .; PENNA, L. de O. .; NEVES , E. O. .; PEREIRA , . P. A. P. .; CUNHA , S. F. V. da .; VASCONCELOS, C. M. . Grain maceration of Chenopodium quinoa Willd: effect of time and temperature. Research, Society and Development, [S. l.], v. 9, n. 11, p. e399119483, 2020. DOI: 10.33448/rsd-v9i11.9483. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/9483. Acesso em: 19 apr. 2024.

Issue

Section

Agrarian and Biological Sciences