Chemical profile and bioprospecting of cocoa beans analyzed by paper spray mass spectrometry

Authors

DOI:

https://doi.org/10.33448/rsd-v9i8.6882

Keywords:

PS-MS; Theobroma cacao; Bioactive compounds; 20-Hydroxyecdysone; Clovamide.

Abstract

The quality cocoa derived products have increasingly received greater recognition and relevance both by consumers and producers. Cocoa beans are the main components responsible for much of the cocoa agro-industrial chain being currently valued for the bioactive properties found in the species' by-products, creating a great interest in exploring the potentials of cocoa. Much of the work that aims to evaluate the compounds found in the fruit's beans employ HPLC, UHPLC and LC-MS. In this work Paper Spray Mass Spectrometry (PS-MS) was employed as a method for characterizing and bioprospecting the chemical profile of cocoa beans (Theobroma cacao) of the forrasteiro variety grown in the Trans-Amazonian region of the Brazilian State of Pará. Methanolic extracts were prepared from samples of cocoa beans and evaluated in the negative and positive ionization modes. In the positive ionization mode it was possible to identify 11 compounds, comprising the classes of methylxanthines (18.2%), phenylpropanoids (9.1%), steroids (27.3%) and flavonoids (45.5%), while in the negative ionization mode, it was possible to identify 55 compounds among hydroxybenzoic acids (16.4%), phenylpropanoids (20.0%), flavonoids (52.7%), sugars and glycosides (10.9%). PS-MS proved to be an effective method for the evaluation of cocoa bean samples, being able to identify a total of sixty-six compounds. The bioactive properties attributed to cocoa were confirmed in the samples analyzed by the compounds identified through PS-MS whilst also indicating the quality of the raw material and describing its chemical profile, contributing to a greater understanding of its attributes.

Author Biography

Afonso Henrique de Oliveira Júnior, Universidade Federal de São João del-Rei


References

Ágoston, C., Urbán, R., Rigó, A., Griffiths, M. D., & Demetrovics, Z. (2019). Morningness-eveningness and caffeine consumption: A largescale path-analysis study. Chronobiology International, 36(9), 1301–1309. https://doi.org/10.1080/07420528.2019.1624372

Ajaha, A., Bouayad, N., Aarab, A., & Rharrabe, K. (2019). Effect of 20-hydroxyecdysone, a phytoecdysteroid, on development, digestive, and detoxification enzyme activities of tribolium castaneum (Coleoptera: Tenebrionidae). Journal of Insect Science, 19(5). https://doi.org/10.1093/jisesa/iez097

Algharrawi, K. H. R., Summers, R. M., & Subramanian, M. (2017). Production of theobromine by N-demethylation of caffeine using metabolically engineered E. coli. Biocatalysis and Agricultural Biotechnology, 11, 153–160. https://doi.org/10.1016/j.bcab.2017.06.014

Bacanli, M., Başaran, A. A., & Başaran, N. (2015). The antioxidant and antigenotoxic properties of citrus phenolics limonene and naringin. Food and Chemical Toxicology, 81, 160–170. https://doi.org/10.1016/j.fct.2015.04.015

Ballard, C. R., & Maróstica, M. R. (2018). Health Benefits of Flavonoids. In Bioactive Compounds: Health Benefits and Potential Applications. https://doi.org/10.1016/B978-0-12-814774-0.00010-4

Barnaba, C., Nardin, T., Pierotti, A., Malacarne, M., & Larcher, R. (2017). Targeted and untargeted characterisation of free and glycosylated simple phenols in cocoa beans using high resolution-tandem mass spectrometry (Q-Orbitrap). Journal of Chromatography A, 1480, 41–49. https://doi.org/10.1016/j.chroma.2016.12.022

Barros, H. R. de M., García-Villalba, R., Tomás-Barberán, F. A., & Genovese, M. I. (2016). Evaluation of the distribution and metabolism of polyphenols derived from cupuassu (Theobroma grandiflorum) in mice gastrointestinal tract by UPLC-ESI-QTOF. Journal of Functional Foods, 22, 477–489. https://doi.org/10.1016/j.jff.2016.02.009

Cádiz-Gurrea, M. L., Lozano-Sanchez, J., Contreras-Gámez, M., Legeai-Mallet, L., Fernández-Arroyo, S., & Segura-Carretero, A. (2014). Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. Journal of Functional Foods, 10, 485–498. https://doi.org/10.1016/j.jff.2014.07.016

Calderón, A. I., Wright, B. J., Hurst, W. J., & Van Breemen, R. B. (2009). Screening antioxidants using LC-MS: Case study with cocoa. Journal of Agricultural and Food Chemistry, 57(13), 5693–5699. https://doi.org/10.1021/jf9014203

Chen, X. Y., Zhou, J., Luo, L. P., Han, B., Li, F., Chen, J. Y., … Yu, X. P. (2015). Black Rice Anthocyanins Suppress Metastasis of Breast Cancer Cells by Targeting RAS/RAF/MAPK Pathway. BioMed Research International, 2015. https://doi.org/10.1155/2015/414250

Clifford, M. N., & Scalbert, A. (2000). Ellagitannins - Nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture, 80(7), 1118–1125. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1118::AID-JSFA570>3.0.CO;2-9

Cova, I., Leta, V., Mariani, C., Pantoni, L., & Pomati, S. (2019). Exploring cocoa properties: is theobromine a cognitive modulator? Psychopharmacology, 236(2), 561–572. https://doi.org/10.1007/s00213-019-5172-0

D’Souza, R. N., Grimbs, S., Behrends, B., Bernaert, H., Ullrich, M. S., & Kuhnert, N. (2017). Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Research International, 99(May), 550–559. https://doi.org/10.1016/j.foodres.2017.06.007

Da Rosa, H. S., De Camargo, V. B., Camargo, G., Garcia, C. V., Fuentefria, A. M., & Mendez, A. S. L. (2015). Ecdysteroids in Sida tuberculata R.E. Fries (Malvaceae): Chemical composition by LC-ESI-MS and selective anti-Candida krusei activity. Food Chemistry, 182, 193–199. https://doi.org/10.1016/j.foodchem.2015.02.144

da Silva, J. P., do S. Costa, M., Campina, F. F., Bezerra, C. F., de Freitas, T. S., Sousa, A. K., … Rocha, J. E. (2020). Evaluation of chelating and cytoprotective activity of vanillin against the toxic action of mercuric chloride as an alternative for phytoremediation. Environmental Geochemistry and Health, 0123456789(Tino 2010). https://doi.org/10.1007/s10653-020-00538-x

Dinan, L., Mamadalieva, N. Z., & Lafont, R. (2020). Dietary Phytoecdysteroids. In Handbook of Dietary Phytochemicals. https://doi.org/10.1007/978-981-13-1745-3_35-1

Ding, Y., Dai, X., Jiang, Y., Zhang, Z., Bao, L., Li, Y., … Li, Y. (2013). Grape seed proanthocyanidin extracts alleviate oxidative stress and ER stress in skeletal muscle of low-dose streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats. Molecular Nutrition and Food Research, 57(2), 365–369. https://doi.org/10.1002/mnfr.201200463

Evard, H., Kruve, A., Lõhmus, R., & Leito, I. (2015). Paper spray ionization mass spectrometry: Study of a method for fast-screening analysis of pesticides in fruits and vegetables. Journal of Food Composition and Analysis, 41, 221–225. https://doi.org/10.1016/j.jfca.2015.01.010

Gallego, A. M., Rojas, L. F., Rodriguez, H. A., Mora, C., Atehortúa, L., Urrea, A. I., … Pabón-Mora, N. (2019). Metabolomic profile of cacao cell suspensions growing in blue light/dark conditions with potential in food biotechnology. Plant Cell, Tissue and Organ Culture, 139(2), 275–294. https://doi.org/10.1007/s11240-019-01679-3

Gálvez, M., Martín-Cordero, C., & Ayuso, M. J. (2005). Pharmacological activities of iridoids biosynthesized by route II. Studies in Natural Products Chemistry, 32(PART L), 365–394. https://doi.org/10.1016/S1572-5995(05)80060-2

Ghosh, S., Basak, P., Dutta, S., Chowdhury, S., & Sil, P. C. (2017). New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food and Chemical Toxicology, 103, 41–55. https://doi.org/10.1016/j.fct.2017.02.028

Gibbons, C. H., Schmidt, P., Biaggioni, I., Frazier-Mills, C., Freeman, R., Isaacson, S., … Kaufmann, H. (2017). The recommendations of a consensus panel for the screening, diagnosis, and treatment of neurogenic orthostatic hypotension and associated supine hypertension. Journal of Neurology, 264(8), 1567–1582. https://doi.org/10.1007/s00415-016-8375-x

Guo, T., Zhang, Z., Yannell, K. E., Dong, Y., & Cooks, R. G. (2017). Paper spray ionization mass spectrometry for rapid quantification of illegal beverage dyes. Analytical Methods, 9(44), 6273–6279. https://doi.org/10.1039/c7ay02241g

Huang, J. L., Fu, S. T., Jiang, Y. Y., Cao, Y. B., Guo, M. L., Wang, Y., & Xu, Z. (2007). Protective effects of Nicotiflorin on reducing memory dysfunction, energy metabolism failure and oxidative stress in multi-infarct dementia model rats. Pharmacology Biochemistry and Behavior, 86(4), 741–748. https://doi.org/10.1016/j.pbb.2007.03.003

Juurlink, B. H. J., Azouz, H. J., Aldalati, A. M. Z., Altinawi, B. M. H., & Ganguly, P. (2014). Hydroxybenzoic acid isomers and the cardiovascular system. Nutrition Journal, 13(1), 1–10. https://doi.org/10.1186/1475-2891-13-63

Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food and Nutrition Research, 61(1), 0–21. https://doi.org/10.1080/16546628.2017.1361779

Kim, W., Seong, K. M., & Youn, B. (2011). Phenylpropanoids in radioregulation: Double edged sword. Experimental and Molecular Medicine, 43(6), 323–333. https://doi.org/10.3858/emm.2011.43.6.034

Kugelman, A., & Durand, M. (2011). A comprehensive approach to the prevention of bronchopulmonary dysplasia. Pediatric Pulmonology, 46(12), 1153–1165. https://doi.org/10.1002/ppul.21508

Lam, K. Y., Sasmita, A. O., Pick, A., Ling, K., Koh, R. Y., & Leong, K. G. (2018). Neuroprotective Mechanisms of Orientin against Hydrogen Peroxide- induced Oxidative Damage in SH-SY5Y Cells. Journal of Biochemistry, Microbiology and Biotechnology, 6(1), 10–18.

Lamhamdi, M., Lafont, R., Rharrabe, K., Sayah, F., Aarab, A., & Bakrim, A. (2016). 20-Hydroxyecdysone protects wheat seedlings (Triticum aestivum L.) against lead stress. Plant Physiology and Biochemistry, 98, 64–71. https://doi.org/10.1016/j.plaphy.2015.11.006

Li, A., Wei, P., Hsu, H. C., & Cooks, R. G. (2013). Direct analysis of 4-methylimidazole in foods using paper spray mass spectrometry. Analyst, 138(16), 4624–4630. https://doi.org/10.1039/c3an00888f

Li, R., Guo, M., Zhang, G., Xu, X., & Li, Q. (2006). Nicotiflorin reduces cerebral ischemic damage and upregulates endothelial nitric oxide synthase in primarily cultured rat cerebral blood vessel endothelial cells. Journal of Ethnopharmacology, 107(1), 143–150. https://doi.org/10.1016/j.jep.2006.04.024

Martinez-Zapata, M. J., Vernooij, R. W., Uriona Tuma, S. M., Stein, A. T., Moreno, R. M., Vargas, E., … Bonfill Cosp, X. (2016). Phlebotonics for venous insufficiency. Cochrane Database of Systematic Reviews, 2016(4). https://doi.org/10.1002/14651858.CD003229.pub3

Meng, S., Cao, J., Feng, Q., Peng, J., & Hu, Y. (2013). Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evidence-Based Complementary and Alternative Medicine, 2013. https://doi.org/10.1155/2013/801457

Morling, J. R., Yeoh, S. E., & Kolbach, D. N. (2015). Rutosides for treatment of post-thrombotic syndrome. Cochrane Database of Systematic Reviews, 2015(9). https://doi.org/10.1002/14651858.CD005625.pub3

Murakami, A., Ashida, H., & Terao, J. (2008). Multitargeted cancer prevention by quercetin. Cancer Letters, 269(2), 315–325. https://doi.org/10.1016/j.canlet.2008.03.046

Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan, G. J., Shumzaid, M., … XiaoHui, Z. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine and Pharmacotherapy, 97(August 2017), 67–74. https://doi.org/10.1016/j.biopha.2017.10.064

Odai, T., Terauchi, M., Kato, K., Hirose, A., & Miyasaka, N. (2019). Effects of grape seed proanthocyanidin extract on vascular endothelial function in participants with prehypertension: A randomized, double-blind, placebo-controlled study. Nutrients, 11(12). https://doi.org/10.3390/nu11122844

Oliveira, C. T., Ramos, A. L. C. C., Mendonça, H. D. O. P., Consenza, G. P., Silva, M. R., Fernandes, C., ... & de Araújo, R. L. B. (2020). Quantification of 6-gingerol, metabolomic analysis by paper spray mass spectrometry and determination of antioxidant activity of ginger rhizomes (Zingiber officinale). Research, Society and Development, 9(8), 366984822. http://dx.doi.org/10.33448/rsd-v9i8.4822

Onakpoya, I. J., Spencer, E. A., Thompson, M. J., & Heneghan, C. J. (2015). The effect of chlorogenic acid on blood pressure: A systematic review and meta-analysis of randomized clinical trials. Journal of Human Hypertension, 29(2), 77–81. https://doi.org/10.1038/jhh.2014.46

Oracz, J., Nebesny, E., & Żyżelewicz, D. (2015). Changes in the flavan-3-ols, anthocyanins, and flavanols composition of cocoa beans of different Theobroma cacao L. groups affected by roasting conditions. European Food Research and Technology, 241(5), 663–681. https://doi.org/10.1007/s00217-015-2494-y

Oracz, J., Zyzelewicz, D., & Nebesny, E. (2015). The Content of Polyphenolic Compounds in Cocoa Beans (Theobroma cacao L.), Depending on Variety, Growing Region, and Processing Operations: A Review. Critical Reviews in Food Science and Nutrition, 55(9), 1176–1192. https://doi.org/10.1080/10408398.2012.686934

Ortega, N., Romero, M. P., MacIà, A., Reguant, J., Anglès, N., Morelló, J. R., & Motilva, M. J. (2008). Obtention and characterization of phenolic extracts from different cocoa sources. Journal of Agricultural and Food Chemistry, 56(20), 9621–9627. https://doi.org/10.1021/jf8014415

Patras, M. A., Milev, B. P., Vrancken, G., & Kuhnert, N. (2014). Identification of novel cocoa flavonoids from raw fermented cocoa beans by HPLC-MSn. Food Research International, 63, 353–359. https://doi.org/10.1016/j.foodres.2014.05.031

Peláez, P. P., Guerra, S., & Contreras, D. (2016). Changes in physical and chemical characteristics of fermented cocoa (Theobroma cacao) beans with manual and semi-mechanized transfer, between fermentation boxes. Scientia Agropecuaria, 07(02), 111–119. https://doi.org/10.17268/sci.agropecu.2016.02.04

Pereira-Caro, G., Borges, G., Nagai, C., Jackson, M. C., Yokota, T., Crozier, A., & Ashihara, H. (2013). Profiles of phenolic compounds and purine alkaloids during the development of seeds of Theobroma cacao cv. Trinitario. Journal of Agricultural and Food Chemistry, 61(2), 427–434. https://doi.org/10.1021/jf304397m

Perez-Vizcaino, F., & Fraga, C. G. (2018). Research trends in flavonoids and health. Archives of Biochemistry and Biophysics, 646(March), 107–112. https://doi.org/10.1016/j.abb.2018.03.022

Quelal-Vásconez, M. A., Lerma-García, M. J., Pérez-Esteve, É., Arnau-Bonachera, A., Barat, J. M., & Talens, P. (2020). Changes in methylxanthines and flavanols during cocoa powder processing and their quantification by near-infrared spectroscopy. Lwt, 117(September 2019), 108598. https://doi.org/10.1016/j.lwt.2019.108598

Ramos, A. L. C. C., Mendes, D. D., Silva, M. R., Augusti, R., Melo, J. O. F., de Araújo, R. L. B., & Lacerda, I. C. A. (2020). Chemical profile of Eugenia brasiliensis (Grumixama) pulp by PS/MS paper spray and SPME-GC/MS solid-phase microextraction. Research, Society and Development, 9(7), 318974008. http://dx.doi.org/10.33448/rsd-v9i7.4008

Riboni, N., Quaranta, A., Motwani, H. V., Österlund, N., Gräslund, A., Bianchi, F., & Ilag, L. L. (2019). Solvent-Assisted Paper Spray Ionization Mass Spectrometry (SAPSI-MS) for the Analysis of Biomolecules and Biofluids. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-45358-x

Roth, S., Spalinger, M. R., Müller, I., Lang, S., Rogler, G., & Scharl, M. (2014). Bilberry-derived anthocyanins prevent IFN-γ-induced pro-inflammatory signalling and cytokine secretion in human THP-1 monocytic cells. Digestion, 90(3), 179–189. https://doi.org/10.1159/000366055

Rufino, M. do S. M., Alves, R. E., de Brito, E. S., Pérez-Jiménez, J., Saura-Calixto, F., & Mancini-Filho, J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chemistry, 121(4), 996–1002. https://doi.org/10.1016/j.foodchem.2010.01.037

Saint-Cricq De Gaulejac, N., Glories, Y., & Vivas, N. (1999). Free radical scavenging effect of anthocyanins in red wines. Food Research International, 32(5), 327–333. https://doi.org/10.1016/S0963-9969(99)00093-9

Sánchez-Rabaneda, F., Jáuregui, O., Casals, I., Andrés-Lacueva, C., Izquierdo-Pulido, M., & Lamuela-Raventós, R. M. (2003). Liquid chromatographic/electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). Journal of Mass Spectrometry, 38(1), 35–42. https://doi.org/10.1002/jms.395

Seeram, N. P., Momin, R. A., Nair, M. G., & Bourquin, L. D. (2001). Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine, 8(5), 362–369. https://doi.org/10.1078/0944-7113-00053

Silva, M. R., Freitas, L. G., Souza, A. G., Araújo, R. L. B., Lacerda, I. C. A., Pereira, H. V., … Melo, J. O. F. (2019). Antioxidant Activity and Metabolomic Analysis of Cagaitas (Eugenia dysenterica) Using using Paper Paper Spray Spray Mass Mass Spectrometry Spectrometry. Journal of the Brazilian Chemical Society, 30(5), 1034–1044. https://doi.org/10.21577/0103-5053.20190002

Snel, J., & Lorist, M. M. (2011). Effects of caffeine on sleep and cognition. In Progress in Brain Research (1st ed., Vol. 190). https://doi.org/10.1016/B978-0-444-53817-8.00006-2

Song, Y., Cui, T., Xie, N., Zhang, X., Qian, Z., & Liu, J. (2014). Protocatechuic acid improves cognitive deficits and attenuates amyloid deposits, inflammatory response in aged AβPP/PS1 double transgenic mice. International Immunopharmacology, 20(1), 276–281. https://doi.org/10.1016/j.intimp.2014.03.006

Stavric, B. (1988). Methylxanthines: Toxicity to humans. 3. Theobromine, paraxanthine and the combined effects of methylxanthines. Food and Chemical Toxicology, 26(8), 725–733. https://doi.org/10.1016/0278-6915(88)90073-7

Steinberg, F. M., Bearden, M. M., & Keen, C. L. (2003). Cocoa and chocolate flavonoids: Implications for cardiovascular health. Journal of the American Dietetic Association, 103(2), 215–223. https://doi.org/10.1053/jada.2003.50028

Sunil, C., & Xu, B. (2019). An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry, 166(July), 112066. https://doi.org/10.1016/j.phytochem.2019.112066

Szczepaniak, O., Ligaj, M., Kobus-Cisowska, J., Tichoniuk, M., Dziedziński, M., Przeor, M., & Szulc, P. (2020). The genoprotective role of naringin. Biomolecules, 10(5), 1–20. https://doi.org/10.3390/biom10050700

Taverna, D., Di Donna, L., Bartella, L., Napoli, A., Sindona, G., & Mazzotti, F. (2016). Fast analysis of caffeine in beverages and drugs by paper spray tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 408(14), 3783–3787. https://doi.org/10.1007/s00216-016-9468-1

Tebayashi, S. I., Ishihara, A., Tsuda, M., & Iwamura, H. (2000). Induction of clovamide by jasmonic acid in red clover. Phytochemistry, 54(4), 387–392. https://doi.org/10.1016/S0031-9422(00)00098-4

Tsai, S. jei, & Yin, M. chin. (2012). Anti-glycative and anti-inflammatory effects of protocatechuic acid in brain of mice treated by d-galactose. Food and Chemical Toxicology, 50(9), 3198–3205. https://doi.org/10.1016/j.fct.2012.05.056

Türker, M., & Dalar, A. (2013). In vitro antioxidant and enzyme inhibitory properties and phenolic composition of M. neglecta Wallr. (Malvaceae) fruit: A traditional medicinal fruit from Eastern Anatolia. Industrial Crops and Products, 51, 376–380. https://doi.org/10.1016/j.indcrop.2013.09.015

Venditti, A., Bianco, A., Frezza, C., Conti, F., Bini, L. M., Giuliani, C., … Maggi, F. (2015). Essential oil composition, polar compounds, glandular trichomes and biological activity of Hyssopus officinalis subsp. aristatus (Godr.) Nyman from central Italy. Industrial Crops and Products, 77, 353–363. https://doi.org/10.1016/j.indcrop.2015.09.002

Wan, C. W., Wong, C. N. Y., Pin, W. K., Wong, M. H. Y., Kwok, C. Y., Chan, R. Y. K., … Chan, S. W. (2013). Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR-α in hypercholesterolemic rats induced with a high-cholesterol diet. Phytotherapy Research, 27(4), 545–551. https://doi.org/10.1002/ptr.4751

Wang, H., Liu, J., Cooks, R. G., & Ouyang, Z. (2010). Paper Spray for Direct Analysis of Complex Mixtures Using Mass Spectrometry. Angewandte Chemie, 122(5), 889–892. https://doi.org/10.1002/ange.200906314

Wang, X., An, F., Wang, S., An, Z., & Wang, S. (2017). Orientin Attenuates Cerebral Ischemia/Reperfusion Injury in Rat Model through the AQP-4 and TLR4/NF-κB/TNF-α Signaling Pathway. Journal of Stroke and Cerebrovascular Diseases, 26(10), 2199–2214. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.05.002

Winter, A. N., Brenner, M. C., Punessen, N., Snodgrass, M., Byars, C., Arora, Y., & Linseman, D. A. (2017). Comparison of the Neuroprotective and Anti-Inflammatory Effects of the Anthocyanin Metabolites, Protocatechuic Acid and 4-Hydroxybenzoic Acid. Oxidative Medicine and Cellular Longevity, 2017. https://doi.org/10.1155/2017/6297080

Xiao, Z.-P., Peng, Z.-Y., Peng, M.-J., Yan, W.-B., Ouyang, Y.-Z., & Zhu, H.-L. (2011). Flavonoids Health Benefits and Their Molecular Mechanism. Mini-Reviews in Medicinal Chemistry, 11(2), 169–177. https://doi.org/10.2174/138955711794519546

Yazaki, K., Sasaki, K., & Tsurumaru, Y. (2009). Prenylation of aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry, 70(15–16), 1739–1745. https://doi.org/10.1016/j.phytochem.2009.08.023

Yousuf, B., Gul, K., Wani, A. A., & Singh, P. (2016). Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review. Critical Reviews in Food Science and Nutrition, 56(13), 2223–2230. https://doi.org/10.1080/10408398.2013.805316

Yuan, Y., Gong, X., Zhang, L., Jiang, R., Yang, J., Wang, B., & Wan, J. (2017). Chlorogenic acid ameliorated concanavalin A-induced hepatitis by suppression of Toll-like receptor 4 signaling in mice. International Immunopharmacology, 44, 97–104. https://doi.org/10.1016/j.intimp.2017.01.017

Downloads

Published

06/08/2020

How to Cite

OLIVEIRA JÚNIOR, A. H. de; RAMOS, A. L. C. C.; GUEDES, M. N. S.; FAGUNDES, M. C. P.; AUGUSTI, R.; MELO, J. O. F. Chemical profile and bioprospecting of cocoa beans analyzed by paper spray mass spectrometry. Research, Society and Development, [S. l.], v. 9, n. 8, p. e975986882, 2020. DOI: 10.33448/rsd-v9i8.6882. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/6882. Acesso em: 16 apr. 2024.

Issue

Section

Agrarian and Biological Sciences