Indications, materials and properties of 3D printing in dentistry: a literature overview

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10632

Keywords:

3D printing; Dental materials; Dentistry; Accuracy.

Abstract

3D printing and digital manufacturing technologies have been largely used in dentistry in recent years and dentists and prosthetic technician are up to date and involved in the subject, following the advancement of technology. The objective of the present manuscript was to carry out a descriptive literature review, covering the processing methods, precision, types of materials used and the applications of 3D printing in dentistry. A bibliographic search was conducted in the PUBMED database (www.pubmed.gov), in which studies published from 2000 to 2020 were collected. Laboratory studies, case reports, systematic and literature reviews were included. Therefore, articles that did not address the topic in question, letters to the editor, opinion articles, duplicate literature and texts that were not in English were excluded. According to the inclusion and exclusion criteria, 75 research articles were selected. In dentistry the most common methods of 3D printing used are: stereolithography (SLA), material jetting (MJ), binder jetting, and Laser sintering. It is important to carefully consider the limitation of each method, material and operator’s skills in 3D printing for this technology to be more affordable in dentistry. Despite that, the accuracy of printing methods and materials used in different dental applications with 3D printing have been improving each day more, allowing a digital workflow with greater applicability and frequency of use in dentistry.

Author Biographies

Nathália de Carvalho Ramos, Universidade São Francisco

1Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Sao Paulo, Brazil.2Department of Dentistry, Universidade São Francisco (USF), Bragança Paulista, Sao Paulo, Brazil.

Marco Antonio Bottino, São Paulo State University

Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Sao Paulo, Brazil.

João Paulo Mendes Tribst, São Paulo State University

Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, Sao Paulo, Brazil.

References

Abduo, J., Lyons, K., & Bennamoun, M. (2014). Trends in computer-aided manufacturing in prosthodontics: A review of the available streams. International Journal of Dentistry, 2014:783948, 15. https://doi.org/10.1155/2014/783948

Akova, T., Ucar, Y., Tukay, A., Balkaya, M. C., & Brantley, W. A. (2008). Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dental Materials, 24(10), 1400–1404. https://doi.org/10.1016/j.dental.2008.03.001

Alharbi, N., Osman, R., & Wismeijer, D. (2016a). Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. Journal of Prosthetic Dentistry, 115(6), 760–767. https://doi.org/10.1016/j.prosdent.2015.12.002

Alharbi, N., Osman, R., & Wismeijer, D. (2016b). Factors Influencing the Dimensional Accuracy of 3D-Printed Full-Coverage Dental Restorations Using Stereolithography Technology. The International Journal of Prosthodontics, 29(5), 503–510. https://doi.org/10.11607/ijp.4835

Andonović, V., & Vrtanoski, G. (2010). Growing rapid prototyping as a technology in dental medicine, 29(1), 31–39. Retrieved from https://mesj.ukim.edu.mk/sites/default/files/Mech-Eng-29-1-2010.pdf#page=32

Aragón, M. L. C., Pontes, L. F., Bichara, L. M., Flores-Mir, C., & Normando, D. (2016). Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: A systematic review. European Journal of Orthodontics, 38(4), 429–434. https://doi.org/10.1093/ejo/cjw033

American Society for Testing and Materials. (2009). ASTM 52900-15: standard terminology for additive manufacturing - general principles and terminology. West Conshohocken, PA: ASTM International.

Azari, A., & Nikzad, S. (2009). The evolution of rapid prototyping in dentistry: A review. Rapid Prototyping Journal, 15(3), 216–225. https://doi.org/10.1108/13552540910961946

Barazanchi, A., Li, K. C., Al-Amleh, B., Lyons, K., & Waddell, J. N. (2017). Additive Technology: Update on Current Materials and Applications in Dentistry. Journal of Prosthodontics, 26(2), 156–163. https://doi.org/10.1111/jopr.12510

Bibb, R., Eggbeer, D., & Williams, R. (2006). Rapid manufacture of removable partial denture frameworks. Rapid Prototyping Journal, 12(2), 95–99. https://doi.org/10.1108/13552540610652438

Birnbaum NS, A. H. (2008). Dental impressions using 3D digital scanners: virtual becomes reality. Compend Contin Educ Dent, 29(8), 494, 496, 498-505. Retrieved from https://pubmed.ncbi.nlm.nih.gov/18935788/

Borges, A. L. S., Dal Piva, A. M. D. O., Paes-Junior, T. J. D. A., & Tribst, J. P. M. (2020). Mouthguard Use Effect on the Biomechanical Response of an Ankylosed Maxillary Central Incisor during a Traumatic Impact: A 3-Dimensional Finite Element Analysis. Life, 10(11), 294. https://doi.org/10.3390/life10110294

Chang, S. L., Lo, C. H., & Jiang, C.-P. (2015). The Manufacture of Molar and Dental Bridge through 3D Printing. Applied Mechanics and Materials, 789–790, 1217–1222. https://doi.org/10.4028/www.scientific.net/amm.789-790.1217

Chen, H., Wang, H., Lv, P., Wang, Y., & Sun, Y. (2015). Quantitative evaluation of tissue surface adaption of CAD-designed and 3D printed wax pattern of maxillary complete denture. BioMed Research International, 2015:453968, p. 5 https://doi.org/10.1155/2015/453968

Chung, Y. J., Park, J. M., Kim, T. H., Ahn, J. S., Cha, H. S., & Lee, J. H. (2018). 3D printing of resin material for denture artificial teeth: Chipping and indirect tensile fracture resistance. Materials, 11(10), 1–13. https://doi.org/10.3390/ma11101798

Dawood, A., Marti, B. M., Sauret-Jackson, V., & Darwood, A. (2015). 3D printing in dentistry. British Dental Journal, 219(11), 521–529. https://doi.org/10.1038/sj.bdj.2015.914

Denry, I., & Kelly, J. R. (2014). Emerging ceramic-based materials for dentistry. Journal of Dental Research, 93(12), 1235–1242. https://doi.org/10.1177/0022034514553627

Ebert, J., Özkol, E., Zeichner, A., Uibel, K., Weiss, Ö., Koops, U., & Fischer, H. (2009). Direct inkjet printing of dental prostheses made of zirconia. Journal of Dental Research, 88(7), 673–676. https://doi.org/10.1177/0022034509339988

Eggbeer, D., Bibb, R., & Williams, R. (2005). The computer-aided design and rapid prototyping fabrication of removable partial denture frameworks. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 219(3), 195–202. https://doi.org/10.1243/095441105X9372

Ender, A., & Mehl, A. (2013). Accuracy of complete-Arch dental impressions: A new method of measuring trueness and precision. Journal of Prosthetic Dentistry, 109(2), 121–128. https://doi.org/10.1016/S0022-3913(13)60028-1

Fahad, M., Dickens, P., & Gilbert, M. (2013). Novel polymeric support materials for jetting based additive manufacturing processes. Rapid Prototyping Journal, 19(4), 230–239. https://doi.org/10.1108/13552541311323245

Goodacre, C. J., Garbacea, A., Naylor, W. P., Daher, T., Marchack, C. B., & Lowry, J. (2012). CAD/CAM fabricated complete dentures: Concepts and clinical methods of obtaining required morphological data. Journal of Prosthetic Dentistry, 107(1), 34–46. https://doi.org/10.1016/S0022-3913(12)60015-8

Groth, C., Kravitz, N. D., Jones, P. E., Graham, J. W., & Redmond, W. R. (2014). Three-dimensional printing technology. Journal of Clinical Orthodontics, 48(8), 475–485. Retrieved from http://www.kravitzorthodontics.com/assets/pdfs/3-Dimensional-Printing-Technology.pdf

Hada, T., Kanazawa, M., Iwaki, M., Arakida, T., Soeda, Y., Katheng, A., & Minakuchi, S. (2020). Effect of printing direction on the accuracy of 3D-printed dentures using stereolithography technology. Materials, 13(15), 1–12. https://doi.org/10.3390/ma13153405

Hatamleh, M. M., & Watson, J. (2013). Construction of an Implant-Retained Auricular Prosthesis with the Aid of Contemporary Digital Technologies: A Clinical Report. Journal of Prosthodontics, 22(2), 132–136. https://doi.org/10.1111/j.1532-849X.2012.00916.x

Hoang, L. N., Thompson, G. A., Cho, S. H., Berzins, D. W., & Ahn, K. W. (2015). Die spacer thickness reproduction for central incisor crown fabrication with combined computer-aided design and 3D printing technology: An in vitro study. Journal of Prosthetic Dentistry, 113(5), 398–404. https://doi.org/10.1016/j.prosdent.2014.11.004

Homsy, F. R., Özcan, M., Khoury, M., & Majzoub, Z. A. K. (2018). Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies. Journal of Prosthetic Dentistry, 119(5), 783–790. https://doi.org/10.1016/j.prosdent.2017.07.025

Huang, H. L., Hsu, J. T., Fuh, L. J., Lin, D. J., & Chen, M. Y. C. (2010). Biomechanical simulation of various surface roughnesses and geometric designs on an immediately loaded dental implant. Computers in Biology and Medicine, 40(5), 525–532. https://doi.org/10.1016/j.compbiomed.2010.03.008

Huang, Z., Zhang, L., Zhu, J., & Zhang, X. (2015). Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology. Journal of Prosthetic Dentistry, 113(6), 623–627. https://doi.org/10.1016/j.prosdent.2014.10.012

Inokoshi, M., Kanazawa, M., & Minakuchi, S. (2012). Evaluation of a complete denture trial method applying rapid prototyping. Dental Materials Journal, 31(1), 40–46. https://doi.org/10.4012/dmj.2011-113

Jang, Y., Sim, J. Y., Park, J. K., Kim, W. C., Kim, H. Y., & Kim, J. H. (2020). Accuracy of 3-unit fixed dental prostheses fabricated on 3D-printed casts. Journal of Prosthetic Dentistry, 123(1), 135–142. https://doi.org/10.1016/j.prosdent.2018.11.004

Kanazawa, M., Inokoshi, M., Minakuchi, S., & Ohbayashi, N. (2011). Trial of a CAD/CAM system for fabricating complete dentures. Dental Materials Journal, 30(1), 93–96. https://doi.org/10.4012/dmj.2010-112

Katase, H., Kanazawa, M., Inokoshi, M., & Minakuchi, S. (2013). Face simulation system for complete dentures by applying rapid prototyping. Journal of Prosthetic Dentistry, 109(6), 353–360. https://doi.org/10.1016/S0022-3913(13)60316-9

Katkar, R. A., Taft, R. M., & Grant, G. T. (2018). 3D Volume Rendering and 3D Printing (Additive Manufacturing). Dental Clinics of North America, 62(3), 393–402. https://doi.org/10.1016/j.cden.2018.03.003

Kattadiyil, M. T., Goodacre, C. J., Baba, N. Z. (2013). CAD/CAM complete dentures: A review of two commercial fabrication systems. J. Calif. Dent. Assoc, (41), 407–416. Retrieved from https://pubmed.ncbi.nlm.nih.gov/23875432/

Keating, A. P., Knox, J., Bibb, R., & Zhurov, A. I. (2008). A comparison of plaster, digital and reconstructed study model accuracy. Journal of Orthodontics, 35(3), 191–201. https://doi.org/10.1179/146531207225022626

Kessler, A., Hickel, R., & Reymus, M. (2019). 3D Printing in Dentistry — State of the Art, 45(1), 30–40. https://doi.org/http://doi.org/10.2341/18-229-L

Kim, T. H., Varjao, F. (2016). 3D printed complete dentures. Quintessence Dent. Technol, (39), 141–149. Retrieved from https://scholar.google.com/scholar?hl=es&as _sdt=0%2C5&q=Kim%2C+T.H.%3B+Varjao%2C+F.+%282016%29.+3D+printed+complete+dentures.+Quintessence+Dent.+Technol%2C+%2839%29%2C+141%E2%80%93149.&btnG=

Kim, K. B., Kim, W. C., Kim, H. Y., & Kim, J. H. (2013). An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sintering system. Dental Materials, 29(7), e91–e96. https://doi.org/10.1016/j.dental.2013.04.007

Krar S, G. A. (2003). Exploring Advanced Manufacturing Technology. New York, Industrial Press Inc, 721.

Lal, K., White, G. S., Morea, D. N., & Wright, R. F. (2006). Use of stereolithographic templates for surgical and prosthodontic implant planning and placement. Part I. The concept. Journal of Prosthodontics, 15(1), 51–58. https://doi.org/10.1111/j.1532-849X.2006.00069.x

Liu, Q., Leu, M. C., & Schmitt, S. M. (2006). Rapid prototyping in dentistry: Technology and application. International Journal of Advanced Manufacturing Technology, 29(3–4), 317–335. https://doi.org/10.1007/s00170-005-2523-2

Maeda, Y., Mitioura, M., Tsutsum, S., Tsumi, T., Okad, M., & Nokub, T. (1994). A CAD / CAM System for Removable Denture . Part I : Fabrication of Complete Dentures. The International Journal of Prosthodontics, 7(1), 17–22. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8179777

Masood, S. H., Rattanawong, W., & Iovenitti, P. (2003). A generic algorithm for a best part orientation system for complex parts in rapid prototyping. Journal of Materials Processing Technology, 139(1-3 SPEC), 110–116. https://doi.org/10.1016/S0924-0136(03)00190-0

Melchels, F. P. W., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050

Melo Filho, A. B., Tribst, J. P. M., Ramos, N. C., Luz, J. N., Jardini, M. A. N.,

Borges, A. L. S., Santamaria, M.P., & Melo, R.M. (2019). Failure Probability, Stress Distribution and Fracture Analysis of Experimental Screw for Micro Conical Abutment. Brazilian Dental Journal, 30(2):157-163. doi: 10.1590/0103-6440201902401.

Mitteramskogler, G., Gmeiner, R., Felzmann, R., Gruber, S., Hofstetter, C., Stampfl, J., … Laubersheimer, J. (2014). Light curing strategies for lithography-based additive manufacturing of customized ceramics. Additive Manufacturing, 1, 110–118. https://doi.org/10.1016/j.addma.2014.08.003

Örtorp, A., Jönsson, D., Mouhsen, A., & Vult Von Steyern, P. (2011). The fit of cobalt-chromium three-unit fixed dental prostheses fabricated with four different techniques: A comparative in vitro study. Dental Materials, 27(4), 356–363. https://doi.org/10.1016/j.dental.2010.11.015

Osman, R., Alharbi, N., & Wismeijer, D. (2017). Build Angle: Does It Influence the Accuracy of 3D-Printed Dental Restorations Using Digital Light-Processing Technology? The International Journal of Prosthodontics, 30(2), 182–188. https://doi.org/10.11607/ijp.5117

Park, M. E., & Shin, S. Y. (2018). Three-dimensional comparative study on the accuracy and reproducibility of dental casts fabricated by 3D printers. Journal of Prosthetic Dentistry, 119(5), 861.e1-861.e7. https://doi.org/10.1016/j.prosdent.2017.08.020

Pereira, S. P., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM, NTE. Rtrived from https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Pereyra, N. M., Marano, J., Subramanian, G., Quek, S., Leff, D. (2015). Comparison of Patient Satisfaction in the Fabrication of Conventional Dentures vs. DENTCA (CAD/CAM) Dentures: A Case Report. J. N. J. Dent. Assoc., (86), 26–33. Retrieved from https://scholar.google.com/scholar?hl=es&as_sdt=0%2C5&q=Comparison+of+Patient+Satisfaction+in+the+Fabrication+of+Conventional+Dentures+vs.+DENTCA+%28CAD%2FCAM%29+Dentures%3A+A+Case+Repor&btnG=

Pompa, G., Di Carlo, S., De Angelis, F., Cristalli, M. P., & Annibali, S. (2015). Comparison of Conventional Methods and Laser-Assisted Rapid Prototyping for Manufacturing Fixed Dental Prostheses: An in Vitro Study. BioMed Research International, 2015. https://doi.org/10.1155/2015/318097

Puebla, K., Arcaute, K., Quintana, R., & Wicker, R. B. (2012). Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type i specimens manufactured via stereolithography. Rapid Prototyping Journal, 18(5), 374–388. https://doi.org/10.1108/13552541211250373

Quante, K., Ludwig, K., & Kern, M. (2008). Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dental Materials, 24(10), 1311–1315. https://doi.org/10.1016/j.dental.2008.02.011

Revilla-León, M., Gonzalez-Martín, Ó., Pérez López, J., Sánchez-Rubio, J. L., & Özcan, M. (2018). Position Accuracy of Implant Analogs on 3D Printed Polymer versus Conventional Dental Stone Casts Measured Using a Coordinate Measuring Machine. Journal of Prosthodontics, 27(6), 560–567. https://doi.org/10.1111/jopr.12708

Revilla-León, M., & Özcan, M. (2019). Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. Journal of Prosthodontics, 28(2), 146–158. https://doi.org/10.1111/jopr.12801

Revilla-León, Marta, and Mutlu Özcan. "Additive manufacturing technologies used for 3D metal printing in dentistry." Current Oral Health Reports 4.3 (2017): 201-208.

Revilla-León, Marta, Mehrad Sadeghpour, and Mutlu Özcan. "An update on applications of 3D printing technologies used for processing polymers used in implant dentistry." Odontology 108.3 (2020): 331-338.

Sancho-Puchades, M., Fehmer, V., Hämmerle, C., Dent, M., & Sailer, I. (2015). Advanced smile diagnostics using CAD/CAM mock-ups. The European Journal of Esthetic Dentistry, 10, 374–391. Retrieved from http://www.quintpub.com/userhome/ejed/ejed_10 _3_sanchopuchades_p374.pdf

S

him, J. S., Kim, J. E., Jeong, S. H., Choi, Y. J., & Ryu, J. J. (2020). Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. Journal of Prosthetic Dentistry, 124(4), 468–475. https://doi.org/10.1016/j.prosdent.2019.05.034

Silva, N. R. F. A., Witek, L., Coelho, P. G., Thompson, V. P., Rekow, E. D., & Smay, J. (2011). Additive CAD/CAM process for dental prostheses. Journal of Prosthodontics, 20(2), 93–96. https://doi.org/10.1111/j.1532-849X.2010.00623.x

Stansbury, J. W., & Idacavage, M. J. (2016). 3D printing with polymers: Challenges among expanding options and opportunities. Dental Materials, 32(1), 54–64. https://doi.org/10.1016/j.dental.2015.09.018

Strub, J. R., Rekow, E. D., & Witkowski, S. (2006). Computer-aided design and fabrication of dental restorations: Current systems and future possibilities. Journal of the American Dental Association, 137(9), 1289–1296. https://doi.org/10.14219/jada.archive.2006.0389

Sun, Y., Lü, P., & Wang, Y. (2009). Study on CAD&RP for removable complete denture. Computer Methods and Programs in Biomedicine, 93(3), 266–272. https://doi.org/10.1016/j.cmpb.2008.10.003

Tahayeri, A., Morgan, M. C., Fugolin, A. P., Bompolaki, D., Athirasala, A., Pfeifer, C. S., … Bertassoni, L. E. (2018). 3D printed versus conventionally cured provisional crown and bridge dental materials. Dental Materials, 34(2), 192–200. https://doi.org/10.1016/j.dental.2017.10.003

Tamay, D. G., Usal, T. D., Alagoz, A. S., Yucel, D., Hasirci, N., & Hasirci, V. (2019). 3D and 4D printing of polymers for tissue engineering applications. Frontiers in Bioengineering and Biotechnology, 7(JUL). https://doi.org/10.3389/fbioe.2019.00164

Tymrak, B. M., Kreiger, M., & Pearce, J. M. (2014). Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials and Design, 58, 242–246. https://doi.org/10.1016/j.matdes.2014.02.038

Ucar, Y., Akova, T., Akyil, M. S., & Brantley, W. A. (2009). Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: Laser-sintered Co-Cr crowns. Journal of Prosthetic Dentistry, 102(4), 253–259. https://doi.org/10.1016/S0022-3913(09)60165-7

Urrios, A., Parra-Cabrera, C., Bhattacharjee, N., Gonzalez-Suarez, A. M., Rigat-Brugarolas, L. G., Nallapatti, U., & Folch, A. (2016). 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab on a Chip, 16(12), 2287–2294. https://doi.org/10.1039/c6lc00153j

Van Noort, R. (2012). The future of dental devices is digital. Dental Materials, 28(1), 3–12. https://doi.org/10.1016/j.dental.2011.10.014

Vandenbroucke, B., & Kruth, J.-P. (2007). Selective Laser Melting of Biocompatible Metals for Rapid. Rapid Prototyping Journal, 13(4), 148–159.

Vasques, M. T., Mori, M., & Laganá, D. C. (2020). Three-dimensional printing of occlusal devices for temporomandibular disorders by using a free CAD software program: A technical report. Journal of Prosthetic Dentistry, 123(2), 232–235. https://doi.org/10.1016/j.prosdent.2018.12.017

Villefort, R. F., Tribst, J., Dal Piva, A., Borges, A. L., Binda, N. C., Ferreira, C., Bottino, M. A., & von Zeidler, S. (2020). Stress distribution on different bar materials in implant-retained palatal obturator. PloS one, 15(10), e0241589. https://doi.org/10.1371/journal.pone.0241589

Wang, J., Shaw, L. L., & Cameron, T. B. (2006). Solid freeform fabrication of permanent dental restorations via slurry micro-extrusion. Journal of the American Ceramic Society, 89(1), 346–349. https://doi.org/10.1111/j.1551-2916.2005.00672.x

Williams, R. J., Bibb, R., Eggbeer, D., & Collis, J. (2006). Use of CAD/CAM technology to fabricate a removable partial denture framework. Journal of Prosthetic Dentistry, 96(2), 96–99. https://doi.org/10.1016/j.prosdent.2006.05.029

Wu, J., Wang, X., Zhao, X., Zhang, C., & Gao, B. (2012). A study on the fabrication method of removable partial denture framework by computer-aided design and rapid prototyping. Rapid Prototyping Journal, 18(4), 318–323. https://doi.org/10.1108/13552541211231743

Yao, H., Wang, J., & Mi, S. (2017). Photo processing for biomedical hydrogels design and functionality: A review. Polymers, 10(1), 1–27. https://doi.org/10.3390/polym10010011

Yeung, M., Abdulmajeed, A., Carrico, C. K., Deeb, G. R., & Bencharit, S. (2020). Accuracy and precision of 3D-printed implant surgical guides with different implant systems: An in vitro study. Journal of Prosthetic Dentistry, 123(6), 821–828. https://doi.org/10.1016/j.prosdent.2019.05.027

Zhang, Y. De, Jiang, J. G., Liang, T., & Hu, W. P. (2011). Kinematics modeling and experimentation of the multi-manipulator tooth-arrangement robot for full denture manufacturing. Journal of Medical Systems, 35(6), 1421–1429. https://doi.org/10.1007/s10916-009-9419-x

Zhang, Z. chen, Li, P. lun, Chu, F. ting, & Shen, G. (2019). Influence of the three-dimensional printing technique and printing layer thickness on model accuracy. Journal of Orofacial Orthopedics, 80(4), 194–204. https://doi.org/10.1007/s00056-019-00180-y

Downloads

Published

04/12/2020

How to Cite

ARCILA, L. V. C. .; RAMOS, N. de C. .; BOTTINO, M. A. .; TRIBST, J. P. M. . Indications, materials and properties of 3D printing in dentistry: a literature overview. Research, Society and Development, [S. l.], v. 9, n. 11, p. e80791110632, 2020. DOI: 10.33448/rsd-v9i11.10632. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/10632. Acesso em: 26 apr. 2024.

Issue

Section

Health Sciences