Effects of bisphosphonates on different zones of the epiphyseal growth plate of rats

Authors

DOI:

https://doi.org/10.33448/rsd-v10i14.22159

Keywords:

Alendronate; Zoledronic acid; Growth plate; Animal models; Epiphyses.

Abstract

Bisphosphonates (BIS) are indicated for several clinical disorders (e.g., osteoporosis). However, BIS has been associated with osteonecrosis and alterations in osteoclastogenesis and skeletal development. This study aimed to evaluate the effects of BIS (zoledronic acid - ZA and alendronate sodium - AS) on zones of the growth plate of rat femur. Animals (Wistar rats, n = 19) were divided into groups: 1) AS Group: animals received alendronate sodium orally (3 mg/kg per day); 2) ZA Group: ZA was administered intraperitoneally (0.2 mg/kg per week); and 3) Control Group (CG): a vehicle was administered. Animals were euthanized 21 days after the treatment, and femurs were collected for histological analysis. The images of all zones (resting, proliferative, hypertrophic, and calcified) were processed by the Qcapture® software providing a 40 and 400-fold increase.  ZA decreased epiphyseal growth plate cell zones (ZA Group vs. CG) in most cases. Likewise, AS diminished the proliferative zone (AS Group vs. CG). Furthermore, ZA increased the calcified zone (ZA Group vs. CG). Previous works demonstrated that BIS decrease the epiphyseal disc. This reduction is probably due to the shortening of the cellular zones that undergoes calcification/ossification. The present results suggest that BIS should be carefully indicated because these drugs might accelerate epiphyseal closure.

References

Ballock, R. T., & O’Keefe, R. J. (2003). Physiology and pathophysiology of the growth plate. In Birth Defects Research Part C - Embryo Today: Reviews (Vol. 69, Issue 2, pp. 123–143). Birth Defects Res C Embryo Today. https://doi.org/10.1002/bdrc.10014

Batch, J. A., Couper, J. J., Rodda, C., Cowell, C. T., & Zacharin, M. (2003). Use of bisphosphonate therapy for osteoporosis in childhood and adolescence. In Journal of Paediatrics and Child Health (Vol. 39, Issue 2, pp. 88–92). J Paediatr Child Health. https://doi.org/10.1046/j.1440-1754.2003.00083.x

Bianchi, M. L. (2005). How to manage osteoporosis in children. In Best Practice and Research: Clinical Rheumatology (Vol. 19, Issue 6, pp. 991–1005). Best Pract Res Clin Rheumatol. https://doi.org/10.1016/j.berh.2005.06.006

Biggin, A., & Munns, C. F. (2017). Long-Term Bisphosphonate Therapy in Osteogenesis Imperfecta. In Current Osteoporosis Reports (Vol. 15, Issue 5, pp. 412–418). Current Medicine Group LLC 1. https://doi.org/10.1007/s11914-017-0401-0

Brighton, C. T. (1984). The growth plate. In Orthopedic Clinics of North America (Vol. 15, Issue 4, pp. 571–595). Elsevier. https://doi.org/10.1016/s0030-5898(20)31257-8

De Barros Silva, P. G., Ferreira Junior, A. E. C., Teófilo, C. R., Barbosa, M. C., Lima Júnior, R. C. P., Sousa, F. B., Mota, M. R. L., De Albuquerque Ribeiro, R., & Alves, A. P. N. N. (2015). Effect of different doses of zoledronic acid in establishing of bisphosphonate-related osteonecrosis. Archives of Oral Biology, 60(9), 1237–1245. https://doi.org/10.1016/j.archoralbio.2015.05.015

De Oliveira, F. A. K., Pinto, F. F. E., Sardenberg, T., Pereira, G. J. C., Curcelli, E. C., & Penna, V. (2019). Diagnosis and management of paget’s disease of bone - series of 8 cases. Acta Ortopedica Brasileira, 27(1), 31–32. https://doi.org/10.1590/1413-785220192701161107

Dominguez, L. J., Bella, G. Di, Belvedere, M., & Barbagallo, M. (2011). Physiology of the aging bone and mechanisms of action of bisphosphonates. Biogerontology, 12(5), 397–408. https://doi.org/10.1007/s10522-011-9344-5

Erdogan, M., Bereket, C., Ozkan, N., Alici, O., Sener, I., Desteli, E. E., & Ilkaya, F. (2014). The effect of zoledronic acid on growth plates and high turnover bones. Bratislava Medical Journal, 115(3), 131–135. https://doi.org/10.4149/BLL_2014_028

Fernandes, C., Leite, R. S., & Lanças, F. M. (2005). Bisfosfonatos: Síntese, análises químicas e aplicações farmacológicas. In Quimica Nova (Vol. 28, Issue 2, pp. 274–280). Sociedade Brasileira de Quimica. https://doi.org/10.1590/S0100-40422005000200019

Fischer, A. H., Jacobson, K. A., Rose, J., & Zeller, R. (2008). Hematoxylin and eosin staining of tissueand cell sections. Cold Spring Harbor Protocols, 3(5). https://doi.org/10.1101/pdb.prot4986

Gerber, H. P., Vu, T. H., Ryan, A. M., Kowalski, J., Werb, Z., & Ferrara, N. (1999). VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Medicine, 5(6), 623–628. https://doi.org/10.1038/9467

Harrington, J. T., Ste-Marie, L. G., Brandi, M. L., Civitelli, R., Fardellone, P., Grauer, A., Barton, I., & Boonen, S. (2004). Risedronate Rapidly Reduces the Risk for Nonvertebral Fractures in Women with Postmenopausal Osteoporosis. Calcified Tissue International, 74(2), 129–135. https://doi.org/10.1007/s00223-003-0042-4

Huang, R. C., Khan, S. N., Sandhu, H. S., Metzl, J. A., Cammisa, F. P., Zheng, F., Sama, A. A., & Lane, J. M. (2005). Alendronate inhibits spine fusion in a rat model. Spine, 30(22), 2516–2522. https://doi.org/10.1097/01.brs.0000186470.28070.7b

Hunziker, E. B., Schenk, R. K., & Cruz-Orive, L. M. (1987). Quantitation of chondrocyte performance in growth-plate cartilage during longitudinal bone growth. Journal of Bone and Joint Surgery - Series A, 69(2), 162–173. https://doi.org/10.2106/00004623-198769020-00002

Hunziker, Ernst B. (1994). Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microscopy Research and Technique, 28(6), 505–519. https://doi.org/10.1002/jemt.1070280606

Junges, A. C. (2013). Avaliação das características microscópicas do fêmur de ratos. https://lume.ufrgs.br/handle/10183/152822

Khosla, S., Burr, D., Cauley, J., Dempster, D. W., Ebeling, P. R., Felsenberg, D., Gagel, R. F., Gilsanz, V., Guise, T., Koka, S., McCauley, L. K., McGowan, J., McKee, M. D., Mohla, S., Pendrys, D. G., Raisz, L. G., Ruggiero, S. L., Shafer, D. M., Shum, L., … Shane, E. (2007). Bisphosphonate-associated osteonecrosis of the jaw: Report of a Task Force of the American Society for Bone and Mineral Research. In Journal of Bone and Mineral Research (Vol. 22, Issue 10, pp. 1479–1491). J Bone Miner Res. https://doi.org/10.1359/jbmr.0707onj

Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biology, 8(6), e1000412. https://doi.org/10.1371/journal.pbio.1000412

Lawson, M., Triffitt, J., Ebetino, F., Barnett, B., Phipps, R., & Locklin, R. (2005). Potential bone mineral binding differences among bisphosphonates can be demonstrated by the use of hydroxyapatite column chromatography. - ORA - Oxford University Research Archive. https://ora.ox.ac.uk/objects/uuid:37e8be6d-f3f0-49aa-8b1f-ccbc78ea2f07

Leclerc, J. T., Michou, L., Vaillancourt, F., Pelet, S., Simonyan, D., & Belzile, E. L. (2019). Prevalence and Characteristics of Atypical Periprosthetic Femoral Fractures. Journal of Bone and Mineral Research, 34(1), 83–92. https://doi.org/10.1002/jbmr.3584

Li, Z., Kong, K., & Qi, W. (2006). Osteoclast and its roles in calcium metabolism and bone development and remodeling. In Biochemical and Biophysical Research Communications (Vol. 343, Issue 2, pp. 345–350). https://doi.org/10.1016/j.bbrc.2006.02.147

Lin, J. H. (1996). Bisphosphonates: A review of their pharmacokinetic properties. In Bone (Vol. 18, Issue 2, pp. 75–85). Elsevier Inc. https://doi.org/10.1016/8756-3282(95)00445-9

Mackie, E. J., Ahmed, Y. A., Tatarczuch, L., Chen, K. S., & Mirams, M. (2008). Endochondral ossification: How cartilage is converted into bone in the developing skeleton. In International Journal of Biochemistry and Cell Biology (Vol. 40, Issue 1, pp. 46–62). https://doi.org/10.1016/j.biocel.2007.06.009

Mackie, E. J., Tatarczuch, L., & Mirams, M. (2011). The skeleton: A multi-functional complex organ. The growth plate chondrocyte and endochondral ossification. In Journal of Endocrinology (Vol. 211, Issue 2, pp. 109–121). J Endocrinol. https://doi.org/10.1530/JOE-11-0048

Oyhanart, S. R., Escudero, N. D., & Mandalunis, P. M. (2015). Effect of alendronate on the mandible and long bones: An experimental study in vivo. Pediatric Research, 78(6), 618–625. https://doi.org/10.1038/pr.2015.163

Özenci, A. M., Aslan, T., Şahin, Z., Özbey, Ö., acar, N., & Üstünel, I. (2013). Protective effect of zoledronic acid on corticosteroid-induced chondrocyte apoptosis in rat articular cartilage. Acta Orthopaedica et Traumatologica Turcica, 47(6), 430–435. https://doi.org/10.3944/AOTT.2013.3136

Patntirapong, S., & Poolgesorn, M. (2018). Alteration of macrophage viability, differentiation, and function by bisphosphonates. Oral Diseases, 24(7), 1294–1302. https://doi.org/10.1111/odi.12908

Pfeil, D. J. F., & DeCamp, C. E. (2009). The epiphyseal plate: physiology, anatomy, and trauma - PubMed. Compend Contin Educ Vet., 31(8), E1-11.

Porras, A. G., Holland, S. D., & Gertz, B. J. (1999). Pharmacokinetics of alendronate. In Clinical Pharmacokinetics (Vol. 36, Issue 5, pp. 315–328). Adis International Ltd. https://doi.org/10.2165/00003088-199936050-00002

Quinn, R. (2005). Comparing rat’s to human’s age: How old is my rat in people years? In Nutrition (Vol. 21, Issue 6, pp. 775–777). Nutrition. https://doi.org/10.1016/j.nut.2005.04.002

Rezende, E., Bradaschia-Correa, V., Siviero, F., Ambrosio, L. M. B., & Arana-Chavez, V. E. (2017). Effects of bisphosphonates on osteogenesis and osteoclastogenesis signaling during the endochondral ossification of growing rats. Cell and Tissue Research, 368(2), 287–300. https://doi.org/10.1007/s00441-017-2574-3

Russell, R. G. G., Watts, N. B., Ebetino, F. H., & Rogers, M. J. (2008). Mechanisms of action of bisphosphonates: Similarities and differences and their potential influence on clinical efficacy. In Osteoporosis International (Vol. 19, Issue 6, pp. 733–759). Osteoporos Int. https://doi.org/10.1007/s00198-007-0540-8

Saad, H. A., Terry, M. A., Shamie, N., Chen, E. S., Friend, D. F., Holiman, J. D., & Stoeger, C. (2008). An easy and inexpensive method for quantitative analysis of endothelial damage by using vital dye staining and adobe photoshop software. Cornea, 27(7), 818–824. https://doi.org/10.1097/ICO.0b013e3181705ca2

Silva, É. C. C., Terreri, M. T. R. A., Castro, T. C. M. de, Barbosa, C. P. L., Fernandes, A. R. C., & Hilário, M. O. E. (2010). Linhas escleróticas metafisárias em crianças e adolescentes em uso de alendronato. Revista Brasileira de Reumatologia, 50(3), 283–290. https://doi.org/10.1590/s0482-50042010000300008

Tan, J., Sano, H., & Poole, K. (2019). Antiresorptive-associated spontaneous fractures of both tibiae, followed by an atypical femur fracture during the sequential treatment with alendronate, denosumab then teriparatide. BMJ Case Reports, 12(7). https://doi.org/10.1136/bcr-2019-229366

Wilsman, N. J., Farnum, C. E., Leiferman, E. M., Fry, M., & Barreto, C. (1996). Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. Journal of Orthopaedic Research, 14(6), 927–936. https://doi.org/10.1002/jor.1100140613

Zhu, E. D., Louis, L., Brooks, D. J., Bouxsein, M. L., & Demay, M. B. (2014). Effect of bisphosphonates on the rapidly growing male murine skeleton. Endocrinology, 155(4), 1188–1196. https://doi.org/10.1210/en.2013-1993

Downloads

Published

13/11/2021

How to Cite

PONZONI, D.; FERNANDES, E. K. .; SILVA, M. M. da .; SOUZA, I. C. C. de .; NEUBERT, J. K. .; QUEVEDO, A. S. . Effects of bisphosphonates on different zones of the epiphyseal growth plate of rats. Research, Society and Development, [S. l.], v. 10, n. 14, p. e518101422159, 2021. DOI: 10.33448/rsd-v10i14.22159. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/22159. Acesso em: 26 apr. 2024.

Issue

Section

Health Sciences