Characterization of inhibitory supernatants produced by bacteria isolated from goat milk




Raw goat milk; Lactic acid bacteria; Antimicrobial peptide; Biopreservation.


Several compounds can be produced by lactic acid bacteria (LAB) isolated from milk such as bacteriocins, small cationic and thermostable peptides, that possess antimicrobial activity. The technological application of these antimicrobial compounds became important for the industry mainly because of chemical preservatives. This study aimed to isolate LAB with anti-Listeria monocytogenes activity from raw goat milk and to characterize their inhibitory cell-free supernatants (CFS). It was performed Isolation of LAB from raw goat milk, inhibitory activity of the CFS, characterization of CFS inhibitory activity under different conditions, mode of action of the active CFS, adsorption of the anti-Listeria substances present in the CFS of LS2 to L. monocytogenes, molecular identification of LAB isolates with anti-Listeria activity. Three isolated strains produced CFS with active inhibitory substances of proteinaceous nature, identified by 16S rDNA as Weissella cibaria (LS1) and Lactococcus lactis (LS2 and LS3). The CFS of LS2 showed the highest anti-Listeria activity (1600 arbitrary units/mL) after 2 h at pH 6.0 and was bacteriostatic and active at low pH at temperatures of 4 °C to 80 °C. The results suggest that the LS2 strain is a biopreservative culture with potential for applications to control L. monocytogenes in foods.


Albano, H.; Todorov, S. D.; Reenen, C. A.; Hogg, T.; Dicks, L. M. T. & Teixeira P. (2007), “Characterization of two bacteriocins produced by Pediococcus acidilactici isolated from “Alheira”, a fermented sausage traditionally produced in Portugal”, International Journal of Food Microbiology, 116, 239-247.

Bartman, S.; Ghosh, R. & Mandal, N. C. (2018), “Production optimization of broad spectrum bacteriocin of three strains of Lactococcus lactis isolated from homemade buttermilk”, Annals of Agrarian Science, 16, 286-296.

Biscola, V.; Todorov, S. D.; Capuano, V. S. C.; Abriouel, H.; Gálvez, A. & Franco, B. D. G. M. (2013), “Isolation and characterization of a nisin-like bacteriocin produced by a Lactococcus lactis strain isolated from charqui, a Brazilian fermented, salted and dried meat product”, Meat Science, 93, 607–613.

Bizani, D.; Morrissy, J. A.; Dominguez, A. P. M. & Brandelli, A. (2008), “Inibition of Listeria monocytogenes in dairy produts using the bacteriocin-like peptide cerein 8A”, International Journal of Food Microbiology, 121, 229-233.

Cavicchioli, V. Q.; Dornellas, W. S.; Perin, L. M.; Pieri, F. A.; Franco, B. D. G. M.; Todorov, S. D. & Nero, L. A. (2015), “Genetic diversity and some aspects of antimicrobial activity of lactic acid bacteria isolated from goat milk”, App Biochemistry and Biotechnology, 175, 2806-2822.

Coelho, M. C.; Silva, C. C. G.; Ribeiro, S. C.; Dapkevicius, M. L. N. E. & Rosa, H. J. D. (2014), “Control of Listeria monocytogenes in fresh cheese using protective lactic acid bacteria”, International Journal of Food Microbiology, 191, 53-59.

Dal Bello, B.; Cocolin, L.; Zeppa, G.; Field, D.; Cotter, P. D. & Hill, C. (2012), “Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in Cottage cheese”, International Journal of Food Microbiology, 153, 58-65.

Martinis, E. C. P. & Franco, B. D. G. M. (1998), “Inhibition of Listeria monocytogenes in pork product by Lactobacillus sakei strain”, International Journal of Food Microbiology, 42, 119-126.

Fatma, C. H. & Benmechernene, Z. (2013), “Isolation and identification of Leuconostoc mesenteroides producing bacteriocin isolated from Algerian raw camel milk”, Food Control, 26, 117-124.

Furtado, D. N.; Todorov, S. D.; Landgraf, M.; Destro, M. T. & Franco, B. D. G. M. (2015), “Bacteriocinogenic Lactococcus lactis subsp. lactis DF04Mi isolated from goat milk: Application in the control of Listeria monocytogenes in fresh Minas-type goat cheese”, Brazilian Journal Microbiology, 46, 201-206.

Guerrieri, E.; Niederhäusern, S.; Messi, P.; Sabia, C.; Iseppi, R.; Anacarso, I. & Bondi, M. (2009), “Use of lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes in a small-scale model”, Food Control, 20, 861–865.

Hartmann, H. A.; Wilke, T. & Erdman, R. (2011), “Efficacy of bacteriocin-containing cell-free culture supernatants from lactic acid bacteria to control Listeria monocytogenes in food”, International Journal of Food Microbiology, 46, 192–199.

Kaktcham, P. M.; Kouam, E. M. F.; Tientcheu, M. L. T.; Temgoua, J. B.; Wacher, C.; Ngoufack, F. Z. & de Lourdes Pérez-Chabela, M. (2019), “Nisin-producing Lactococcus lactis subsp. lactis 2MT isolated from freshwater Nile tilapia in Cameroon: Bacteriocin screening, characterization, and optimization in a low-cost medium”, LWT- Food Science and Technology, 107, 272-279.

Kariyawasam, K. M. G. M. M.; Jeewanthi, R. K. C.; Lee, N. K. & Paik, H.D. (2019), “Characterization of cottage cheese using Weissella cibaria D30: Physicochemical, antioxidant, and antilisterial properties”, Journal of dairy science, 102, 3887-3893.

Malheiros, P. S.; Cuccovia, I. M. & Franco, B. D. G. M. (2016), “Inhibition of Listeria monocytogenes in vitro and in goat milk by liposomal nanovesicles containing bacteriocins produced by Lactobacillus sakei subsp. sakei 2a”, Food Control, 63, 158-164.

Moraes, P. M.; Perin, L. M.; Ortolani, M. B. T.; Yamazi, A. K.; Viçosa, G. N. & Nero, L.A. (2010), “Protocols for the isolation and detection of lactic acid bacteria with bacteriocinogenic potential”, Food Science and Technology, 43, 1320-1324.

Oliveira, D. E.; Bacchi, M. M.; Macarenco, R. S. S.; Tagliarini, J. V.; Cordeiro, R. C. & Bacchi, C. E. (2006), “Human papillomavirus and Epstein-Barr virus infection, p53 protein expression, and cellullar proliferation in laryngeal carcinoma”, American Journal of Clinical Pathology, 126, 284-293.

Ortolani, M. B. T.; Moraes, P. M.; Perin, L. M.; Viçosa, G. N.; Carvalho, K. G.; Silva Júnior, A. & Nero, L. A. (2010), “Molecular identification of naturally occurring bacteriocinogenic and bacteriocinogenic-like lactic acid bacteria in raw milk and soft cheese”, Journal of Dairy Science, 93, 2880-2886.

Perin, L. M. & Nero, L. A. (2014), “Antagonistic lactic acid bacteria isolated from goat milk and identification of a novel nisin variant Lactococcus lactis”, BCM Microbiology, 14, 1-9.

Pingitore, E. V.; Todorov, S. D.; Sesma, F. & Franco, B. D. G. M. (2012), “Application of bacteriocinogenic Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch in the control of Listeria monocytogenes in fresh Minas cheese”, Food Microbiology, 32, 38-47.

Pinto, A. L.; Fernandes, M.; Pinto, C.; Albano, H.; Castilho, F.; Teixeira, P. & Gibbs, P. A. (2009), “Characterization of anti-Listeria bacteriocins isolated from shellfish: Potential antimicrobials to control non-fermented sea food”, International Journal of Food Microbiology, 129, 50–58.

Queiroga, C. R. E.; Costa, R. G.; Madruga, M. S.; Medeiros, A. N.; Santos, G.; Magnani, M. & Souza, E.L. (2016), “Influence of lactation stage and some flock management practices on sensory characteristics of goat milk from Brazilian Saanen breed”, Animal Science Journal, 87, 600-606.

Rosa, C. M.; Franco, B. D. G. M.; Montville, T. J. & Chikindas, M.L. (2002), “Purification and mechanistic action of a bacteriocin produced by a Brazilian sausage isolated Lactobacillus sake 2a”, Journal of Food Safety, 22, 39-54.

Sip, A.; Ckowicz, M. W.; Olejnik-Schmidt, A. & Grajek, W. (2012), “Anti-Listeria activity of lactic acid bacteria isolated from golka, a regional cheese produced in Poland”, Food Control, 26, 117-124.

Swaminathan, B. & Gerner-Smidt, P. (2007), “The epidemiology of human listeriosis”, Microbes Infection, 9, 1236-1243.

Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A. & Kumar, S. (2013), “MEGA6: Molecular Evolutionary Genetics Analysis version 6.0”, Molecular Biology and Evolution, 30, 2725-2729.

Todorov, S. D. & Dicks, L. M. T. (2006), “Screening for bacteriocin-producing lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria, Comparison of the bacteriocins”, Process Biochemistry, 41, 11–19.

Todorov, S. D. (2010), “Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria”, Food Control, 21, 1011-1021.

Turner, S.; Pryer, K. M.; Miao, V. P. W. & Palmer, J. D. (1999), “Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis”, Journal of Eukaryotic Microbiology, 46, 327–338.

Umu, Ö. C.; Bäuerl, C.; Oostindjer, M.; Pope, P. B.; Hernández, P. E.; Pérez-Martínez, G. & Diep, D.B. (2016), “The potential of class II bacteriocins to modify gut microbiota to improve host health”, Plos one, 11, 1-22.

Viegas, R. P.; Souza, M. R.; Figueiredo, T. C.; Resende, M. F. S.; Penna, C. F. A. M. & Cerqueira, M. M. O. P. (2010), “Quality of fermented milks produced by the use of lactic acid bacteria isolated from coalho cheese”, Arquivo Brasileiro de

Medicina Veterinária e Zootecnia, 62, 460-467.

Wang, G.; Ning, J.; Zhao, J.; Tian, F.; Zhao, J.; Chen, Y.; Zhang, H.; Chen, W.; Chen, W. & Hang, F. (2014), “Partial characterisation of an anti-listeria substance produced by Pediococcus acidilactici P9”, International Dairy Journal, 34, 275-279.

Yildirim, Z.; Avşar, Y. K. & Yildirim, M. (2002), “Factors affecting the adsorption of buchnericin LB, a bacteriocin produced by Lactobacillus buchneri”, Microbiological Research, 157, 103-107.




How to Cite

SILVA, L. A. da .; RAPOSO, A. E. S. .; LOPES NETO, J. H. P.; OLIVEIRA, K. de S.; SOUZA, E. L.; FRANCO, O. L.; CARDARELLI, H. R. Characterization of inhibitory supernatants produced by bacteria isolated from goat milk. Research, Society and Development, [S. l.], v. 11, n. 2, p. e2111225280, 2022. DOI: 10.33448/rsd-v11i2.25280. Disponível em: Acesso em: 21 jun. 2024.



Agrarian and Biological Sciences