Essential Oils from Lamiaceae Species with potential Antifungal activity: a review




Fungi; Thymus; Lavandula; Origanum; Minimum inhibitory concentration (MIC).


In recent years, the incidence of fungal infections has increased sharply. Candida yeasts are responsible for a wide variety of clinical manifestations, from urinary tract infections to bloodstream infections. An alternative to medicines are essential oils and their bioactive compounds, which can present a broad antimicrobial spectrum. There is a large amount of works in the literature that address the role of essential oils from plant species as potential sources of antimicrobial agents, including the anti-Candida action. The species of Lamiaceae are rich in essential oils, which show promising substances in the inhibition of Candida. This review raised articles published in the last five years (2016 to 2021) with the main anti-Candida activities of essential oils from representatives of Lamiaceae, in addition to highlighting their major components. The review consisted of data obtained from 56 articles which included 71 Lamiaceae plants. The essential oils of the species showed good anti-Candida activity (MICs <1000 µg/mL). The main genres worked were: Thymus (14 articles), Lavandula (7), Origanum (5) and Salvia (5). The major components found in the oils include thymol (23 works), carvacrol (20), p-cymene (17), linalool (10), 1,8-cineole (8), γ-terpinene (8) and α-pinene ( 8) as main substances. Essential oils may represent an important finding in the control of multidrug-resistant fungi.

Author Biography

Dennis Bezerra Correia, Universidade Regional do Cariri

Graduated in Biological Sciences (2018) and specialization in Environmental Education (2019), both from the Regional University of Cariri, URCA - CE. He is a specialist in Environmental Management and Auditing (2020) by the Faculty of Venda Nova do Imigrante - FAVENI). He has experience in Environmental Education, working on the following topics: Social and Environmental Education and Social and Biodiversity.


Abu-Darwish, M. S., Cabral, C., Goncalves, M. J., Cavaleiro, C., Cruz, M. T., Paoli, M., ... & Salgueiro, L. (2016). Ziziphora tenuior L. essential oil from dana biosphere reserve (Southern Jordan); chemical characterization and assessment of biological activities. Journal of ethnopharmacology, 194, 963-970.

Al Hafi, M., El Beyrouthy, M., Ouaini, N., Stien, D., Rutledge, D., & Chaillou, S. (2017). Chemical composition and antimicrobial activity of Satureja, Thymus, and Thymbra species grown in Lebanon. Chemistry & biodiversity, 14(5), e1600236.

Albayrak, S., & Aksoy, A. (2019). Phenolic contents and biological activity of endemic Origanum minutiflorum grown in Turkey. Indian J. Pharm. Edu. Res., 53(1), 160-170.

Alizadeh, A. (2016). Essential oil constituents and biological activities of different ecotypes of Satureja bachtiarica Bunge. as a traditional herbal drug in Southwestern Iran. Journal of Essential Oil Bearing Plants, 19(6), 1328-1339.

Andrys, D., Kulpa, D., Grzeszczuk, M., & Białecka, B. (2018). Influence of jasmonic acid on the growth and antimicrobial and antioxidant activities of Lavandula angustifolia Mill. propagated in vitro. Folia Horticulturae, 30(1), 3-13.

Arantes, S., Candeias, F., Lopes, O., Lima, M., Pereira, M., Tinoco, T., ... & Martins, M. R. (2016). Pharmacological and toxicological studies of essential oil of Lavandula stoechas subsp. luisieri. Planta medica, 82(14), 1266-1273.

Ardekani, N. T., Khorram, M., Zomorodian, K., Yazdanpanah, S., Veisi, H., & Veisi, H. (2019). Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. International journal of biological macromolecules, 125, 743-750.

Armstrong-James, D., Brown, G. D., Netea, M. G., Zelante, T., Gresnigt, M. S., van de Veerdonk, F. L., & Levitz, S. M. (2017). Immunotherapeutic approaches to treatment of fungal diseases. The Lancet Infectious Diseases, 17(12), e393-e402.

Arsenijević, J., Drobac, M., Šoštarić, I., Ražić, S., Milenković, M., Couladis, M., & Maksimović, Z. (2016). Bioactivity of herbal tea of Hungarian thyme based on the composition of volatiles and polyphenolics. Industrial Crops and Products, 89, 14-20.

Baj, T., Biernasiuk, A., Wróbel, R., & Malm, A. (2020). Chemical composition and in vitro activity of Origanum vulgare L., Satureja hortensis L., Thymus serpyllum L. and Thymus vulgaris L. essential oils towards oral isolates of Candida albicans and Candida glabrata. Open Chemistry, 18(1), 108-118.

Benali, T., Habbadi, K., Bouyahya, A., Khabbach, A., Marmouzi, I., Aanniz, T., ... & Hammani, K. (2021). Phytochemical Analysis and Study of Antioxidant, Anticandidal, and Antibacterial Activities of Teucrium polium subsp. polium and Micromeria graeca (Lamiaceae) Essential Oils from Northern Morocco. Evidence-Based Complementary and Alternative Medicine, 2021.

Bendif, H., Boudjeniba, M., Miara, M. D., Biqiku, L., Bramucci, M., Lupidi, G., ... & Maggi, F. (2017). Essential Oil of Thymus munbyanus subsp. coloratus from Algeria: Chemotypification and in vitro Biological Activities. Chemistry & biodiversity, 14(3), e1600299.

Bezerra, J. W. A., Rodrigues, F. C., Costa, A. R., Pereira, K. S., Vieira, N. R., de Oliveira Lôbo, G., ... & Braga, M. F. B. M. (2020). Mesosphaerum suaveolens (Lamiacae): Source of antimicrobial and antioxidant compounds. Research, Society and Development, 9(8), e575986161-e575986161.

Bogavac, M. A., Karaman, M. A., Suđi, J. J., Radovanović, B. B., Janjušević, L. N., Ćetković, N. B., & Tešanović, K. D. (2017). Antimicrobial potential of Rosmarinus officinalis commercial essential oil in the treatment of vaginal infections in pregnant women. Natural product communications, 12(1), 1934578X1701200136.

Bona, E., Cantamessa, S., Pavan, M., Novello, G., Massa, N., Rocchetti, A., ... & Gamalero, E. (2016). Sensitivity of Candida albicans to essential oils: are they an alternative to antifungal agents?. Journal of applied microbiology, 121(6), 1530-1545.

Boukhatem, M. N., Darwish, N. H., Sudha, T., Bahlouli, S., Kellou, D., Benelmouffok, A. B., ... & Mousa, S. A. (2020). In vitro antifungal and topical anti-inflammatory properties of essential oil from wild-growing thymus vulgaris (Lamiaceae) used for medicinal purposes in algeria: A new source of carvacrol. Scientia Pharmaceutica, 88(3), 33.

Božović, M., Garzoli, S., Baldisserotto, A., Romagnoli, C., Pepi, F., Cesa, S., ... & Ragno, R. (2018). Melissa officinalis L. subsp. altissima (Sibth. & Sm.) Arcang. essential oil: Chemical composition and preliminary antimicrobial investigation of samples obtained at different harvesting periods and by fractionated extractions. Industrial Crops and Products, 117, 317-321.

Casiglia, S., Bruno, M., Fontana, G., & Senatore, F. (2017). Chemical Composition of the Essential Oil of Mentha pulegium Growing Wild in Sicily and its Activity on Microorganisms Affecting Historical Art Crafts. Natural Product Communications, 12(8), 1934578X1701200840.

Chaib, F., Allali, H., Bennaceur, M., & Flamini, G. (2017). Chemical composition and antimicrobial activity of essential oils from the aerial parts of Asteriscus graveolens (Forssk.) Less. and Pulicaria incisa (Lam.) DC.: Two Asteraceae herbs growing wild in the Hoggar. Chemistry & biodiversity, 14(8), e1700092.

Çolak, N. U., Yıldırım, S., Bozdeveci, A., Yaylı, N., Çoşkunçelebi, K., Fandaklı, S., & Yaşar, A. (2018). Essential oil composition, antimicrobial and antioxidant activities of Salvia staminea.

Cutillas, A. B., Carrasco, A., Martinez-Gutierrez, R., Tomas, V., & Tudela, J. (2018). Rosmarinus officinalis L. essential oils from Spain: Composition, antioxidant capacity, lipoxygenase and acetylcholinesterase inhibitory capacities, and antimicrobial activities. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 152(6), 1282-1292.

Debbabi, H., El Mokni, R., Chaieb, I., Nardoni, S., Maggi, F., Caprioli, G., & Hammami, S. (2020). Chemical Composition, Antifungal and Insecticidal Activities of the Essential Oils from Tunisian Clinopodium nepeta subsp. nepeta and Clinopodium nepeta subsp. glandulosum. Molecules, 25(9), 2137.

Dorsaz, S., Snäkä, T., Favre-Godal, Q., Maudens, P., Boulens, N., Furrer, P., ... & Sanglard, D. (2017). Identification and mode of action of a plant natural product targeting human fungal pathogens. Antimicrobial agents and chemotherapy, 61(9), e00829-17.

Duarte, A. E., & de Menezes, I. R. (2016). Bezerra Morais Braga MF et al. Antimicrobial Activity and Modulatory Effect of Essential Oil from the Leaf of Rhaphiodon echinus (Nees & Mart) Schauer on Some Antimicrobial Drugs. Molecules, 21(6).

Ebani, V. V., Nardoni, S., Bertelloni, F., Pistelli, L., & Mancianti, F. (2018). Antimicrobial activity of five essential oils against bacteria and fungi responsible for urinary tract infections. Molecules, 23(7), 1668.

Elahian, F., Garshasbi, M., Mehri Asiabar, Z., Gholamian Dehkordi, N., Yazdinezhad, A., & Mirzaei, S. A. (2021). Ecotypic Variations Affected the Biological Effectiveness of Thymus daenensis Celak Essential Oil. Evidence-Based Complementary and Alternative Medicine, 2021.

Ferrante, C., Recinella, L., Ronci, M., Orlando, G., Di Simone, S., Brunetti, L., ... & Menghini, L. (2019). Protective effects induced by alcoholic Phlomis fruticosa and Phlomis herba‐venti extracts in isolated rat colon: Focus on antioxidant, anti‐inflammatory, and antimicrobial activities in vitro. Phytotherapy Research, 33(9), 2387-2400.

Fikry, S., Khalil, N., & Salama, O. (2019). Chemical profiling, biostatic and biocidal dynamics of Origanum vulgare L. essential oil. AMB Express, 9(1), 1-10.

Ghavam, M., Manconi, M., Manca, M. L., & Bacchetta, G. (2021). Extraction of essential oil from Dracocephalum kotschyi Boiss. (Lamiaceae), identification of two active compounds and evaluation of the antimicrobial properties. Journal of Ethnopharmacology, 267, 113513.

Günbatan, T., Demirci, B., Gürbüz, İ., Demircib, F., & Özkanc, A. M. G. (2017). Comparison of Volatiles of Sideritis caesarea Specimens Collected from Different Localities in Turkey. Natural Product Communications, 12(10), 1934578X1701201029.

Guo, J., Zhang, M., Qiao, D., Shen, H., Wang, L., Wang, D., ... & Wu, W. (2021). Prevalence and Antifungal Susceptibility of Candida parapsilosis Species Complex in Eastern China: A 15-Year Retrospective Study by ECIFIG. Frontiers in microbiology, 12, 249.

Iseppi, R., Tardugno, R., Brighenti, V., Benvenuti, S., Sabia, C., Pellati, F., & Messi, P. (2020). Phytochemical Composition and In Vitro Antimicrobial Activity of Essential Oils from the Lamiaceae Family against Streptococcus agalactiae and Candida albicans Biofilms. Antibiotics, 9(9), 592.

Jafari, F., Farmani, F., Zomorodian, K., Moein, M., Faridi, P., & Zarshenas, M. M. (2018). A study on essential oil chemical compositions, antioxidant, and antimicrobial activities of native and endemic Satureja Species Growing in Iran. Pharmaceutical Chemistry Journal, 52(1), 63-68.

Justus, B., Almeida, V. P. D., Gonçalves, M. M., Assunção, D. P. D. S. F. D., Borsato, D. M., Arana, A. F. M., ... & Farago, P. V. (2018). Chemical composition and biological activities of the essential oil and anatomical markers of Lavandula dentata L. cultivated in Brazil. Brazilian Archives of Biology and Technology, 61.

Karadağ, A. E., Demirci, B., Kültür, Ş., Demirci, F., & Başer, K. H. C. (2020). Antimicrobial, anticholinesterase evaluation and chemical characterization of essential oil Phlomis kurdica Rech. fil. Growing in Turkey. Journal of Essential Oil Research, 32(3), 242-246.

Karpiński, T. M. (2020). Essential oils of Lamiaceae family plants as antifungals. Biomolecules, 10(1), 103.

Khoury, M., Stien, D., Eparvier, V., Ouaini, N., & El Beyrouthy, M. (2016). Report on the medicinal use of eleven Lamiaceae species in Lebanon and rationalization of their antimicrobial potential by examination of the chemical composition and antimicrobial activity of their essential oils. Evidence-Based Complementary and Alternative Medicine, 2016.

Kiashi, F., Hadjiakhoondi, A., Tofighi, Z., Khanavi, M., Ajani, Y., Ahmadi Koulaei, S., & Yassa*, N. (2021). Compositions of essential oils and some biological properties of Stachys laxa Boiss. & Buhse and S. byzantina K. Koch. Research Journal of Pharmacognosy, 8(2), 5-15.

Kirmizibekmez, H., Karaca, N., Demirci, B., & Demirci, F. (2017). Characterization of Sideritis trojana Bornm. essential oil and its antimicrobial activity. Marmara Pharmaceutical Journal, 21(4), 860-865.

Kumar, A., Kamal, A., Singh, S., Padalia, R. C., Tandon, S., Chauhan, A., ... & Verma, R. S. (2020). Chemical composition, antimicrobial activity, kinetics and mechanism of action of Himalayan-thyme (Thymus linearis Benth.). Journal of Essential Oil Research, 32(1), 59-68.

Liu, S., Hou, Y., Chen, X., Gao, Y., Li, H., & Sun, S. (2014). Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. International journal of antimicrobial agents, 43(5), 395-402.

Lorenzo-Leal, A. C., Palou, E., López-Malo, A., & Bach, H. (2019). Antimicrobial, cytotoxic, and anti-inflammatory activities of Pimenta dioica and Rosmarinus officinalis essential oils. BioMed research international, 2019.

MALINOVSKÁ, Zuzana. Antibiofilm activity of selected plant essential oils from the Lamiaceae family against Candida albicans clinical isolates. Annals of Agricultural and Environmental Medicine, v. 28, n. 2, p. 260-266, 2021.

Mamadalieva, N. Z., Youssef, F. S., Ashour, M. L., Sasmakov, S. A., Tiezzi, A., & Azimova, S. S. (2019). Chemical composition, antimicrobial and antioxidant activities of the essential oils of three Uzbek Lamiaceae species. Natural product research, 33(16), 2394-2397.

Marak, M. B., & Dhanashree, B. (2018). Antifungal susceptibility and biofilm production of Candida spp. isolated from clinical samples. International journal of microbiology, 2018.

Marino, A., Nostro, A., Mandras, N., Roana, J., Ginestra, G., Miceli, N., ... & Tullio, V. (2020). Evaluation of antimicrobial activity of the hydrolate of Coridothymus capitatus (L.) Reichenb. fil.(Lamiaceae) alone and in combination with antimicrobial agents. BMC complementary medicine and therapies, 20(1), 1-11.

Mback, M. N., Agnaniet, H., Nguimatsia, F., Dongmo, P. M. J., Fokou, J. B. H., Bakarnga-Via, I., ... & Menut, C. (2016). Optimization of antifungal activity of Aeollanthus heliotropioides oliv essential oil and Time Kill Kinetic Assay. Journal de mycologie medicale, 26(3), 233-243.

McCarty, T. P., & Pappas, P. G. (2016). Invasive candidiasis. Infectious Disease Clinics, 30(1), 103-124.

Medici, N. P., & Del Poeta, M. (2015). New insights on the development of fungal vaccines: from immunity to recent challenges. Memorias do Instituto Oswaldo Cruz, 110, 966-973.

Milenković, M., Stošović, J., & Slavkovska, V. (2018). Synergy between essential oils of Calamintha species (Lamiaceae) and antibiotics. Natural Product Communications, 13(3), 1934578X1801300325.

Monzote, L., Scherbakov, A. M., Scull, R., Gutiérrez, Y. I., Satyal, P., Cos, P., ... & Setzer, W. N. (2020). Pharmacological assessment of the carvacrol chemotype essential oil from Plectranthus amboinicus growing in Cuba. Natural Product Communications, 15(10), 1934578X20962233.

Müller-Sepúlveda, A., Chevecich, C. C., Jara, J. A., Belmar, C., Sandoval, P., Meyer, R. S., ... & Molina-Berríos, A. (2020). Chemical Characterization of Lavandula dentata Essential Oil Cultivated in Chile and Its Antibiofilm Effect against Candida albicans. Planta Medica, 86(16), 1225-1234.

Najibzadeh, T., & Yadegary, M. H. (2018). Antifungal effect of Satureja khuzestanica Jamzad essential oil on oral candidiasis in immunosuppressed rats. Herba Polonica, 64(3).

Nami, S., Mohammadi, R., Vakili, M., Khezripour, K., Mirzaei, H., & Morovati, H. (2019). Fungal vaccines, mechanism of actions and immunology: a comprehensive review. Biomedicine & Pharmacotherapy, 109, 333-344.

Niczad, A., Sharafzadeh, S., Alizadeh, A., Amiri, B., & Bazrafshan, F. (2019). Variability in essential oil constituent, phenolic content, antioxidant and antimicrobial activities of different ecotypes of Zataria multiflora Boiss. from Iran. Journal of Essential Oil Bearing Plants, 22(6), 1435-1449.

Oubihi, A., Ouryemchi, I., Nounah, I., Tarfaoui, K., Harhar, H., Ouhssine, M., & Guessous, Z. (2020). Chemical composition, antibacterial and antifungal activities of Thymus leptobotrys Murb essential oil. Advances in Traditional Medicine, 20(4), 673-679.

Gupta, S., & Goyal, R. K. (2017). Species Distribution and Antifungal Drug Susceptibility of Candida in Clinical Isolates from a Tertiary Care Centre at Bareilly. IOSR-JDMS, 1(2), 57-61.

Piras, A., Gonçalves, M. J., Alves, J., Falconieri, D., Porcedda, S., Maxia, A., & Salgueiro, L. (2018). Ocimum tenuiflorum L. and Ocimum basilicum L., two spices of Lamiaceae family with bioactive essential oils. Industrial Crops and Products, 113, 89-97.

Potente, G., Bonvicini, F., Gentilomi, G. A., & Antognoni, F. (2020). Anti-Candida Activity of Essential Oils from Lamiaceae Plants from the Mediterranean Area and the Middle East. Antibiotics, 9(7), 395.

Ramírez, J., Gilardoni, G., Jácome, M., Montesinos, J., Rodolfi, M., Guglielminetti, M. L., ... & Vidari, G. (2017). Chemical composition, enantiomeric analysis, AEDA sensorial evaluation and antifungal activity of the essential oil from the Ecuadorian plant Lepechinia mutica Benth (Lamiaceae). Chemistry & biodiversity, 14(12), e1700292.

Sabbobeh, R., Hejaz, H., Jahajha, A., Al-Akhras, S., Al-Jaas, H., & Abu-Lafi, S. (2016). Antioxidant an antimicrobial activities of the leaf extract of Salvia palaestina. J. Appl. Pharm. Sci, 6, 76-82.

Salameh, N., Shraim, N., Jaradat, N., El Masri, M., Adwan, L., K’aibni, S., ... & AbuAlhasan, M. (2020). Screening of antioxidant and antimicrobial activity of Micromeria fruticosa serpyllifolia volatile oils: A comparative study of plants collected from different regions of west Bank, Palestine. BioMed research international, 2020.

Salehi, B., Mishra, A. P., Shukla, I., Sharifi‐Rad, M., Contreras, M. D. M., Segura‐Carretero, A., ... & Sharifi‐Rad, J. (2018). Thymol, thyme, and other plant sources: Health and potential uses. Phytotherapy Research, 32(9), 1688-1706.

Shakeri, A., Khakdan, F., Soheili, V., Sahebkar, A., Shaddel, R., & Asili, J. (2016). Volatile composition, antimicrobial, cytotoxic and antioxidant evaluation of the essential oil from Nepeta sintenisii Bornm. Industrial Crops and Products, 84, 224-229.

Shanaida, M., Hudz, N., Białoń, M., Kryvtsowa, M., Svydenko, L., Filipska, A., & Wieczorek, P. P. (2021). Chromatographic profiles and antimicrobial activity of the essential oils obtained from some species and cultivars of the Mentheae tribe (Lamiaceae). Saudi journal of biological sciences, 28(11), 6145-6152.

Sharma, A., Cooper, R., Bhardwaj, G., & Cannoo, D. S. (2021). The genus Nepeta: Traditional uses, phytochemicals and pharmacological properties. Journal of Ethnopharmacology, 268, 113679.

Spampinato, C., & Leonardi, D. (2013). Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. BioMed research international, 2013.

Stanojevic, L. P., Marjanovic-Balaban, Z. R., Kalaba, V. D., Stanojevic, J. S., Cvetkovic, D. J., & Cakic, M. D. (2017). Chemical composition, antioxidant and antimicrobial activity of basil (Ocimum basilicum L.) essential oil. Journal of Essential Oil Bearing Plants, 20(6), 1557-1569.

Tadić, V., Oliva, A., Božović, M., Cipolla, A., De Angelis, M., Vullo, V., ... & Ragno, R. (2017). Chemical and antimicrobial analyses of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood, an endemic of the Western Balkan. Molecules, 22(9), 1395.

Tsay, S. V., Mu, Y., Williams, S., Epson, E., Nadle, J., Bamberg, W. M., ... & Vallabhaneni, S. (2020). Burden of candidemia in the united states, 2017. Clinical Infectious Diseases, 71(9), e449-e453.

Yiğit Hanoğlu, D., Hanoğlu, A., Güvenir, M., Süer, K., Demirci, B., Başer, K. H. C., & Özkum Yavuz, D. (2017). Chemical composition and antimicrobial activity of the essential oil of Sideritis cypria Post endemic in Northern Cyprus. Journal of Essential Oil Research, 29(3), 228-232.

Zhou, S., Wei, C., Zhang, C., Han, C., Kuchkarova, N., & Shao, H. (2019). Chemical composition, phytotoxic, antimicrobial and insecticidal activity of the essential oils of Dracocephalum integrifolium. Toxins, 11(10), 598.

Zuza-Alves, D. L., Silva-Rocha, W. P., & Chaves, G. M. (2017). An update on Candida tropicalis based on basic and clinical approaches. Frontiers in microbiology, 8, 1927.



How to Cite

CORREIA, D. B. .; CORREIA, D. B. .; VERÇOSA, C. J. .; FIGUEROA, M. E. V. .; OLIVEIRA, J. P. C. de .; SANTOS, A. F. dos .; FERNANDES, N. de S. .; VITOR , L. N. A. .; PEREIRA, F. D. .; BARROS, J. E. L. de .; BENTO, E. B. .; SILVA, M. G. .; PEREIRA, G. G.; LIMA, C. L. B. de . Essential Oils from Lamiaceae Species with potential Antifungal activity: a review. Research, Society and Development, [S. l.], v. 11, n. 2, p. e15111225392, 2022. DOI: 10.33448/rsd-v11i2.25392. Disponível em: Acesso em: 30 may. 2024.



Review Article