Evaluation of Al2O3-SiO2-ZrO2-based ceramic compounds synthesized via sol-gel

Authors

DOI:

https://doi.org/10.33448/rsd-v11i2.25616

Keywords:

Bioceramic; Ophthalmologic applications; Sol-Gel.

Abstract

There are few works in the literature regarding the study and development of new bioceramic compounds for ophthalmologic applications, especially considering the use of advanced laboratory technologies such as the sol-gel process, which presents the possibility of controlling various parameters as namely temperature, stoichiometry and alkalinity. In this regard, the present work synthesized alumina-based bioceramic compounds in combination with silica and zirconia via the sol-gel process, having evaluated the possibility/viability of these biomaterials for orbital reconstruction. The materials were characterized by X-Ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The results show the formation of different structures, with the tendency to form alpha alumina, silica in the form of orthorhombic mullite and zirconia in its monoclinic and tetragonal phases, demonstrated by the characteristic reaction bonds between the precursors, as observed in the FTIR assay. The morphological characterization highlighted that the most determining factor which influences agglomerate size is temperature, followed by silica concentration. These results are relevant for ophthalmological applications, considering the intrinsic properties of each oxide.

References

Agliullin, M. R., Danilova, I. G., Faizullin, A. V., Amarantov, S. V., Bubennov, S. V., Prosochkina, T. R., Grigor’Eva, N. G., Paukshtis, E. A. & Kutepov, B. I. (2016). Sol-gel synthesis of mesoporous aluminosilicates with a narrow pore size distribution and catalytic activity thereof in the oligomerization of dec-1-ene. Microporous and Mesoporous Materials, 230, 118-127.

Baino, F. & Vitale-Brovarone, C. (2014). Bioceramics in ophthalmology. Acta Biomaterialia, 10 (8), 3372-3397.

Chao, D. L. & Harbour, J. W. (2015). Hydroxyapatite versus polyethylene orbital implants for patients undergoing enucleation for uveal melanoma. Canadian Journal of Ophthalmology, 50, 151-154.

Chung, W. S., Song, S. J., Lee, S. H. & Kim, E. A. (2005). Fibrovascularization of intraorbital hydroxyapatite-coated alumina sphere in rabbits. Korean Journal of Ophthalmology, 19, 9-17.

Cui, F. Z., Nelson, B., Peng, Y., Li, K., Pilla, S., Li, W. J., Turng, L-S. & Shen, C. (2012). Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering. Materials Science and Engineering: C, 32, 1674-1681.

Cui, F. Z., Wen, H. B., Zhang, H. B., Ma, C. L. & Li, H. D. (1994). Nanophase hydroxyapatite-like crystallites in natural ivory. Journal of Materials Science Letters, 13, 1042-1044.

Devikala, S., Kamaraj, P. & Arthanareeswar, M. (2019). AC conductivity studies of PVA/Al2O3 composites. Materials Today: Proceedings, 14, 288-295.

Farahmandjou, M. & Motaghi, S. (2019). Sol-gel synthesis of Ce-doped α-Al2O3: Study of crystal and optoelectronic properties. Optics Communications, 441, 1–7.

Iqbal, M. M. A., Bakar, W. A., Toemen, S., Razak, F. I. A. & Azelee, N. I. W. N. (2020). Optimizationstudyby Box-Behnken design (BBD) and mechanistic insight of CO2 methanation over Ru-Fe-Ce/γ-Al2O3 catalyst by in-situ FTIR Technique. Arabian Journal of Chemistry, 13 (2), 4170-4179.

Jean, M. S. (2013). Introduction to molecular vibration and infrared spectroscopy. Chemistry, 362, 1-9.

Jodati, H., Yılmaz, B. & Evis, Z. (2020). A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceramics International, 46 (10, Part B), 15725-15739.

Jordan, D. R., Brownstein, S., Gilberg, S., Coupal, D., Kim, S. & Mawn, L. (2002). Hydroxyapatite and calcium phosphate coatings on aluminium oxide orbital implants. Canadian Journal of Ophthalmology, 37, 7-13.

Kessman, A. J., Ramji, K., Morris, N. J. & Cairns, D. R. (2009). Zirconia sol-gel coatings on alumina–silica refractory material for improved corrosion resistance. Surface & Coatings Technology, 204, 477–483.

Li, W., Liu, X., Huang, A. & Chu, P. K. (2007). Structure and properties of zirconia (ZrO2) films fabricated by plasma-assisted cathodic arc deposition. Journal of Physics D: Applied Physics, 40, 2293-2299.

Mamivand, M., Zaeem, M. A., Kadiri, H. E. & Chen, L. Q. (2013). Phase field modeling of the tetragonal-to-monoclinic phase transformation in zirconia. Acta Materialia, 61, 5223-5235.

Mehta, J. S., Futter, C. E., Sandeman, S. R., Faragher, R. G., Hing, K. A., Tanner, K. E. & Allan, B. D. (2005). Hydroxyapatite promotes superior keratocyte adhesion and proliferation in comparison with current keratoprosthesis skirt materials. British Journal of Ophthalmology, 89, 1356-1362.

Nariyal, R. K., Kothari, P. & Bisht, B. (2014). FTIR Measurements of SiO2 Glass Prepared by Sol-Gel Technique. Chemical Science Transactions, 3, 1064-1066.

Ono, I., Gunji, H., Suda, K., Kaneko, F. & Yago, K. (1994). Orbital reconstruction with hydroxyapatite ceramic implants, Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 28, 193-198.

Owens, G. J., Sing, R. K., Foroutan, H. F., Alqaysi, M., Han, C. M., Mahapatra, C., Kim, W-K. & Knowles, J. C. (2016). Sol-gel based materials for biomedical applications. Progress in Materials Science, 77, 1-79.

Padovini, D. S. S., Magdalena, A. G., Capeli, R. G., Longo, E., Dalmaschio, C. J., Chiquito, A. J. & Pontes, F. M. (2019). Synthesis and characterization of ZrO2@SiO2 core-shell nanostructure as nanocatalyst: Application for environmental remediation of rhodamine B dye aqueous solution. Materials Chemistry and Physics, 233, 1-8.

Ramalla, I., Gupta, R. K. & Bansal, K. (2015). Effect on superhydrophobic surfaces on electrical porcelain insulator, improved technique atpolluted areas for longer life and reliability. International Journal of Engineering & Technology, 4, 509-519.

Saleh, L. S. & Bryant, S. J. (2018). The Host Response in Tissue Engineering: Crosstalk Between Immune cells and Cell-laden Scaffolds. Current Opinion in Biomedical Engineering, 6, 58-65.

Toemen, S., Bakar, W. A. & Ali, R. (2017). CO2/H2 methanation technology of strontia based catalyst: physic chemical andoptimisation studies by Box–Behnken design. Journal of Cleaner Production, 146, 71-82.

Xu, Su., Kou, H., Guo, Y. & Ning, C. (2019). Highly dense Ca5(PO4)2SiO4 bioceramics with ultrafine microstructure prepared by pressureless sintering. Ceramics International, 45 (17, Part B), 23728-23733.

Downloads

Published

26/01/2022

How to Cite

ARAÚJO, D. dos S. .; MACÊDO, M. D. M. .; PEDROSA, T. C. .; SOUSA, W. J. B. .; BARBOSA, R. C. .; TAVARES, A. A. .; FOOK, M. V. L. .; BURITI, J. da S. . Evaluation of Al2O3-SiO2-ZrO2-based ceramic compounds synthesized via sol-gel . Research, Society and Development, [S. l.], v. 11, n. 2, p. e33211225616, 2022. DOI: 10.33448/rsd-v11i2.25616. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/25616. Acesso em: 21 jun. 2024.

Issue

Section

Engineerings