Phenolic composition and extraction methods of Brazilian fruits: jabuticaba (Plinia spp.), açaí (Euterpe oleraceae Mart.), jussara (Euterpe edulis Mart.) and cocoa (Theobroma cacao L.)

Authors

DOI:

https://doi.org/10.33448/rsd-v11i2.25640

Keywords:

Deep eutectic solvent; Pulsed electric field; Supercritical fluid extraction; Ultrasound.

Abstract

Brazil is well known for its great botanic diversity. The native fruits species of jabuticaba (Plinia spp.) açaí (Euterpe oleraceae Mart.), jussara (Euterpe edulis Mart.), and cocoa (Theobroma cacao L.) stand out because of their high antioxidant capacity and diverse phenolic composition, which are the subject of several studies aiming for the extraction of phenolic fractions for their characterization and applicability. This review aimed to discuss the main phenolics identified in these four plant species, and an overview of the most recent methods of phenolic compounds extraction from these species. This work can contribute to future research projects, helping researchers to reach efficient methods of extraction.

References

Afoakwa, E. O. (2016). Chocolate Science and Technology. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118913758

Albuquerque, B. R., Heleno, S. A., Oliveira, M. B. P. P., Barros, L., & Ferreira, I. C. F. R. (2021). Phenolic compounds: current industrial applications, limitations and future challenges. Food & Function, 12(1), 14–29. https://doi.org/10.1039/D0FO02324H

Alezandro, M. R., Dubé, P., Desjardins, Y., Lajolo, F. M., & Genovese, M. I. (2013). Comparative study of chemical and phenolic compositions of two species of jaboticaba: Myrciaria jaboticaba (Vell.) Berg and Myrciaria cauliflora (Mart.) O. Berg. Food Research International, 54(1), 468–477. https://doi.org/10.1016/j.foodres.2013.07.018

Alezandro, M. R., Granato, D., & Genovese, M. I. (2013). Jaboticaba (Myrciaria jaboticaba (Vell.) Berg), a Brazilian grape-like fruit, improves plasma lipid profile in streptozotocin-mediated oxidative stress in diabetic rats. Food Research International, 54(1), 650–659. https://doi.org/10.1016/j.foodres.2013.07.041

Aliaño-González, M. J., Ferreiro-González, M., Espada-Bellido, E., Carrera, C., Palma, M., Álvarez, J. A., & F. Barbero, G. (2020). Extraction of Anthocyanins and Total Phenolic Compounds from Açai (Euterpe oleracea Mart.) Using an Experimental Design Methodology. Part 1: Pressurized Liquid Extraction. Agronomy, 10(2), 183. https://doi.org/10.3390/agronomy10020183

Arlorio, M., Locatelli, M., Travaglia, F., Coïsson, J.-D., Grosso, E. Del, Minassi, A., & Martelli, A. (2008). Roasting impact on the contents of clovamide (N-caffeoyl-L-DOPA) and the antioxidant activity of cocoa beans (Theobroma cacao L.). Food Chemistry, 106(3), 967–975. https://doi.org/10.1016/j.foodchem.2007.07.009

Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials : A review. Journal of Food Engineering, 117(4), 426–436. https://doi.org/10.1016/j.jfoodeng.2013.01.014

Baptista, S. de L., Copetti, C. L. K., Cardoso, A. L., & Di Pietro, P. F. (2021). Biological activities of açaí ( Euterpe oleracea Mart.) and juçara ( Euterpe edulis Mart.) intake in humans: an integrative review of clinical trials. Nutrition Reviews. https://doi.org/10.1093/nutrit/nuab002

Barbosa-Pereira, L., Guglielmetti, A., & Zeppa, G. (2018). Pulsed Electric Field Assisted Extraction of Bioactive Compounds from Cocoa Bean Shell and Coffee Silverskin. Food and Bioprocess Technology, 11(4), 818–835. https://doi.org/10.1007/s11947-017-2045-6

Barros, L., Calhelha, R. C., Queiroz, M. J. R. P., Santos-Buelga, C., Santos, E. A., Regis, W. C. B., & Ferreira, I. C. F. R. (2015). The powerful in vitro bioactivity of Euterpe oleracea Mart. seeds and related phenolic compounds. Industrial Crops and Products, 76, 318–322. https://doi.org/10.1016/j.indcrop.2015.05.086

Barroso, M. E. S., Oliveira, B. G., Pimentel, E. F., Pereira, P. M., Ruas, F. G., Andrade, T. U., & Endringer, D. C. (2019). Phytochemical profile of genotypes of Euterpe edulis Martius – Juçara palm fruits. Food Research International, 116(21), 985–993. https://doi.org/10.1016/j.foodres.2018.09.036

Belwal, T., Ezzat, S. M., Rastrelli, L., Bhatt, I. D., Daglia, M., Baldi, A., & Kumar, J. (2018). A critical analysis of extraction techniques used for botanicals : Trends , priorities , industrial uses and optimization strategies. Trends in Analytical Chemistry, 100, 82–102. https://doi.org/10.1016/j.trac.2017.12.018

Bento-Silva, A., Koistinen, V. M., Mena, P., Bronze, M. R., Hanhineva, K., Sahlstrøm, S., & Aura, A.-M. (2020). Factors affecting intake, metabolism and health benefits of phenolic acids: do we understand individual variability? European Journal of Nutrition, 59(4), 1275–1293. https://doi.org/10.1007/s00394-019-01987-6

Borges, G. D. S. C., Gonzaga, L. V., Jardini, F. A., Mancini Filho, J., Heller, M., Micke, G., & Fett, R. (2013). Protective effect of Euterpe edulis M. on Vero cell culture and antioxidant evaluation based on phenolic composition using HPLC-ESI-MS/MS. Food Research International, 51(1), 363–369. https://doi.org/10.1016/j.foodres.2012.12.035

Borges, P. R. S., Tavares, E. G., Guimarães, I. C., Rocha, R. de P., Araujo, A. B. S., Nunes, E. E., & Vilas Boas, E. V. de B. (2016). Obtaining a protocol for extraction of phenolics from açaí fruit pulp through Plackett–Burman design and response surface methodology. Food Chemistry, 210, 189–199. https://doi.org/10.1016/j.foodchem.2016.04.077

Cádiz-Gurrea, M. L., Lozano-Sanchez, J., Contreras-Gámez, M., Legeai-Mallet, L., Fernández-Arroyo, S., & Segura-Carretero, A. (2014). Isolation, comprehensive characterization and antioxidant activities of Theobroma cacao extract. Journal of Functional Foods, 10, 485–498. https://doi.org/10.1016/j.jff.2014.07.016

Caldas, T. W., Mazza, K. E. L., Teles, A. S. C., Mattos, G. N., Brígida, A. I. S., Conte-Junior, C. A., … Tonon, R. V. (2018). Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Industrial Crops and Products, 111, 86–91. https://doi.org/10.1016/j.indcrop.2017.10.012

Calloni, C., Agnol, R. D., Martínez, L. S., de Siqueira Marcon, F., Moura, S., & Salvador, M. (2015). Jaboticaba (Plinia trunciflora (O. Berg) Kausel) fruit reduces oxidative stress in human fibroblasts cells (MRC-5). Food Research International, 70, 15–22. https://doi.org/10.1016/j.foodres.2015.01.032

Capuzzo, A., Maffei, M. E., & Occhipinti, A. (2013). Supercritical Fluid Extraction of Plant Flavors and Fragrances. Molecules, 18, 7194–7238. https://doi.org/10.3390/molecules18067194

Carrillo, L. C., Londoño-Londoño, J., & Gil, A. (2014). Comparison of polyphenol, methylxanthines and antioxidant activity in Theobroma cacao beans from different cocoa-growing areas in Colombia. Food Research International, 60, 273–280. https://doi.org/10.1016/j.foodres.2013.06.019

Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific Reports, 10(1), 2611. https://doi.org/10.1038/s41598-020-59451-z

Citadin, I., Danner, M. A., & Sasso, S. A. Z. (2010). Jabuticabeiras. Revista Brasileira de fruticultura, 32(2), 343–656.

Costa, D. C., Costa, H. S., Albuquerque, T. G., Ramos, F., Castilho, M. C., & Sanches-Silva, A. (2015). Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends in Food Science & Technology, 45(2), 336–354. https://doi.org/10.1016/j.tifs.2015.06.009

D’Souza, R. N., Grimbs, S., Behrends, B., Bernaert, H., Ullrich, M. S., & Kuhnert, N. (2017). Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Research International, 99, 550–559. https://doi.org/10.1016/j.foodres.2017.06.007

Dass, C. (2007). Fundamentals of contemporary mass spectrometry (16a ed). John Wiley & Sons.

Favreto, R. (2010). Aspectos etnoecológicos e ecofisiológicos de Euterpe edulis Mart.(Arecaceae). Tese, 143. http://www.lume.ufrgs.br/handle/10183/26311

Febrianto, N. A., & Zhu, F. (2019). Diversity in Composition of Bioactive Compounds Among 26 Cocoa Genotypes. Journal of Agricultural and Food Chemistry, 67(34), 9501–9509. https://doi.org/10.1021/acs.jafc.9b03448

Febrianto, N. A., & Zhu, F. (2020). Changes in the Composition of Methylxanthines, Polyphenols, and Volatiles and Sensory Profiles of Cocoa Beans from the Sul 1 Genotype Affected by Fermentation. Journal of Agricultural and Food Chemistry, 68(32), 8658–8675. https://doi.org/10.1021/acs.jafc.0c02909

Febrianto, N. A., & Zhu, F. (2022). Composition of methylxanthines, polyphenols, key odorant volatiles and minerals in 22 cocoa beans obtained from different geographic origins. LWT, 153, 112395. https://doi.org/10.1016/j.lwt.2021.112395

Felzenszwalb, I., Regina, M., Mazzei, J. L., & Aiub, C. A. F. (2013). Toxicological evaluation of Euterpe edulis : A potential superfruit to be considered. Food and Chemical Toxicology, 58, 536–544. https://doi.org/10.1016/j.fct.2013.05.029

Feumba Dibanda, R., Panyoo Akdowa, E., Rani P., A., Metsatedem Tongwa, Q., & Mbofung F., C. M. (2020). Effect of microwave blanching on antioxidant activity, phenolic compounds and browning behaviour of some fruit peelings. Food Chemistry, 302, 125308. https://doi.org/10.1016/j.foodchem.2019.125308

Flora do Brasil 2020. (2021). Jardim Botânico do Rio de Janeiro. https://doi.org/10.47871/jbrj2021001

Garcia-Mendoza, M. del P., Espinosa-Pardo, F. A., Baseggio, A. M., Barbero, G. F., Maróstica Junior, M. R., Rostagno, M. A., & Martínez, J. (2017). Extraction of phenolic compounds and anthocyanins from juçara (Euterpe edulis Mart.) residues using pressurized liquids and supercritical fluids. The Journal of Supercritical Fluids, 119, 9–16. https://doi.org/10.1016/j.supflu.2016.08.014

Garcia, J. A. A., Corrêa, R. C. G., Barros, L., Pereira, C., Abreu, R. M. V., Alves, M. J., & Ferreira, I. C. F. R. (2019). Chemical composition and biological activities of Juçara (Euterpe edulis Martius) fruit by-products, a promising underexploited source of high-added value compounds. Journal of Functional Foods, 55(February), 325–332. https://doi.org/10.1016/j.jff.2019.02.037

Garzón, G. A., Narváez-Cuenca, C.-E., Vincken, J.-P., & Gruppen, H. (2017). Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. Food Chemistry, 217, 364–372. https://doi.org/10.1016/j.foodchem.2016.08.107

Gasparotto Junior, A., de Souza, P., & Lívero, F. A. dos R. (2019). Plinia cauliflora (Mart.) Kausel: A comprehensive ethnopharmacological review of a genuinely Brazilian species. Journal of Ethnopharmacology, 245, 112169. https://doi.org/10.1016/j.jep.2019.112169

Gligor, O., Mocan, A., Moldovan, C., Locatelli, M., Crișan, G., & Ferreira, I. C. F. R. (2019). Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends in Food Science & Technology, 88(September 2018), 302–315. https://doi.org/10.1016/j.tifs.2019.03.029

Granato, D., Shahidi, F., Wrolstad, R., Kilmartin, P., Melton, L. D., Hidalgo, F. J., & Finglas, P. (2018). Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chemistry, 264, 471–475. https://doi.org/10.1016/j.foodchem.2018.04.012

Gültekin-Özgüven, M., Berktaş, I., & Özçelik, B. (2016). Change in stability of procyanidins, antioxidant capacity and in-vitro bioaccessibility during processing of cocoa powder from cocoa beans. LWT - Food Science and Technology, 72, 559–565. https://doi.org/10.1016/j.lwt.2016.04.065

Gurak, P. D., De Bona, G. S., Tessaro, I. C., & Marczak, L. D. F. (2014). Jaboticaba Pomace Powder Obtained as a Co-product of Juice Extraction: A Comparative Study of Powder Obtained from Peel and Whole Fruit. Food Research International, 62, 786–792. https://doi.org/10.1016/j.foodres.2014.04.042

Haminiuk, C. W. I., Maciel, G. M., Plata-Oviedo, M. S. V., & Peralta, R. M. (2012). Phenolic compounds in fruits - an overview. International Journal of Food Science & Technology, 47(10), 2023–2044. https://doi.org/10.1111/j.1365-2621.2012.03067.x

Hanula, M., Wyrwisz, J., Moczkowska, M., Horbańczuk, O. K., Pogorzelska-Nowicka, E., & Wierzbicka, A. (2020). Optimization of Microwave and Ultrasound Extraction Methods of Açai Berries in Terms of Highest Content of Phenolic Compounds and Antioxidant Activity. Applied Sciences, 10(23), 8325. https://doi.org/10.3390/app10238325

Hu, S., Kim, B.-Y., & Baik, M.-Y. (2016). Physicochemical properties and antioxidant capacity of raw, roasted and puffed cacao beans. Food Chemistry, 194, 1089–1094. https://doi.org/10.1016/j.foodchem.2015.08.126

Karak, P. (2019). Biological activities of flavonoids: An overview. International Journal of Pharmaceutical Sciences and Research, 10(4), 1567–1574.

Khoddami, A., Wilkes, M. A., & Roberts, T. H. (2013). Techniques for Analysis of Plant Phenolic Compounds. Molecules, 18, 2328–2375. https://doi.org/10.3390/molecules18022328

Kopustinskiene, D. M., Jakstas, V., Savickas, A., & Bernatoniene, J. (2020). Flavonoids as Anticancer Agents. Nutrients, 12(2), 457. https://doi.org/10.3390/nu12020457

Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370. https://doi.org/10.1016/j.btre.2019.e00370

Kumari, B., Tiwari, B. K., Hossain, M. B., Brunton, N. P., & Rai, D. K. (2018). Recent Advances on Application of Ultrasound and Pulsed Electric Field Technologies in the Extraction of Bioactives from Agro-Industrial By-products. Food and Bioprocess Technology, 11(2), 223–241. https://doi.org/10.1007/s11947-017-1961-9

Leite-legatti, A. V., Giovana, Â., Romanelli, N., Dragano, V., Castro, A., Gomes, L., & Júnior, M. (2012). Jaboticaba peel : Antioxidant compounds , antiproliferative and antimutagenic activities. Food Research International, 49, 596–603.

Lima, M. C., Paiva de Sousa, C., Fernandez-Prada, C., Harel, J., Dubreuil, J. D., & de Souza, E. L. (2019). A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microbial Pathogenesis, 130, 259–270. https://doi.org/10.1016/j.micpath.2019.03.025

Liz, S., Cardoso, A. L., Copetti, C. L. K., Hinnig, P. de F., Vieira, F. G. K., da Silva, E. L., & Di Pietro, P. F. (2020). Açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) juices improved HDL-c levels and antioxidant defense of healthy adults in a 4-week randomized cross-over study. Clinical Nutrition, 39(12), 3629–3636. https://doi.org/10.1016/j.clnu.2020.04.007

Madalão, M. C. M., Lima, E. M. F., Benincá, D. B., Saraiva, S. H., Carvalho, R. V. de, & Silva, P. I. (2021). Extraction of bioactive compounds from juçara pulp (Euterpe edulis M.) is affected by ultrasonic power and temperature. Ciência e Agrotecnologia, 45. https://doi.org/10.1590/1413-7054202145024820

Maleki, S. J., Crespo, J. F., & Cabanillas, B. (2019). Anti-inflammatory effects of flavonoids. Food Chemistry, 299, 125124. https://doi.org/10.1016/j.foodchem.2019.125124

Mariano, E., Gomes, T. F., Lins, S. R. M., Abdalla‐Filho, A. L., Soltangheisi, A., Araújo, M. G. S., & Hampe, A. (2021). LT‐Brazil: A database of leaf traits across biomes and vegetation types in Brazil. Global Ecology and Biogeography, 30(11), 2136–2146. https://doi.org/10.1111/geb.13381

Mayorga-Gross, A. L., Quirós-Guerrero, L. M., Fourny, G., & Vaillant, F. (2016). An untargeted metabolomic assessment of cocoa beans during fermentation. Food Research International, 89, 901–909. https://doi.org/10.1016/j.foodres.2016.04.017

Nadar, S. S., Rao, P., & Rathod, V. K. (2018). Enzyme assisted extraction of biomolecules as an approach to novel extraction technology : A review. Food Research International, 108(March), 309–330. https://doi.org/10.1016/j.foodres.2018.03.006

Neves, N. A., Stringheta, P. C., Gómez-Alonso, S., & Hermosín-Gutiérrez, I. (2018). Flavonols and ellagic acid derivatives in peels of different species of jabuticaba (Plinia spp.) identified by HPLC-DAD-ESI/MSn. Food Chemistry, 252, 61–71. https://doi.org/10.1016/j.foodchem.2018.01.078

Neves, N. A., Stringheta, P. C., Silva, I. F. da, García-Romero, E., Gómez-Alonso, S., & Hermosín-Gutiérrez, I. (2021). Identification and quantification of phenolic composition from different species of Jabuticaba (Plinia spp.) by HPLC-DAD-ESI/MSn. Food Chemistry.

Oliveira, A. C., Miyagawa, L. M., Monteiro, K. M., Dias, A. L. S., Longato, G. B., Spindola, H., & Rogez, H. (2021). Phenolic composition, antiproliferative and antiulcerogenic activities of a polyphenol‐rich purified extract from açai ( Euterpe oleracea ) fruits. International Journal of Food Science & Technology. https://doi.org/10.1111/ijfs.15332

Pedan, V., Weber, C., Do, T., Fischer, N., Reich, E., & Rohn, S. (2018). HPTLC fingerprint profile analysis of cocoa proanthocyanidins depending on origin and genotype. Food Chemistry, 267, 277–287. https://doi.org/10.1016/j.foodchem.2017.08.109

Pimenta Inada, K. O., Nunes, S., Martínez-Blázquez, J. A., Tomás-Barberán, F. A., Perrone, D., & Monteiro, M. (2020). Effect of high hydrostatic pressure and drying methods on phenolic compounds profile of jabuticaba (Myrciaria jaboticaba) peel and seed. Food Chemistry, 309, 125794. https://doi.org/10.1016/j.foodchem.2019.125794

Plaza, M., Batista, Â. G., Cazarin, C. B. B., Sandahl, M., Turner, C., Östman, E., & Maróstica Júnior, M. R. (2016). Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: A pilot clinical study. Food Chemistry, 211, 185–197. https://doi.org/10.1016/j.foodchem.2016.04.142

Pojer, E., Mattivi, F., Johnson, D., & Stockley, C. S. (2013). The Case for Anthocyanin Consumption to Promote Human Health: A Review. Comprehensive Reviews in Food Science and Food Safety, 12(5), 483–508. https://doi.org/10.1111/1541-4337.12024

Pragst, F., Herzler, M., & Erxleben, B.-T. (2004). Systematic toxicological analysis by high-performance liquid chromatography with diode array detection (HPLC-DAD). Clinical Chemistry and Laboratory Medicine (CCLM), 42(11). https://doi.org/10.1515/CCLM.2004.251

Puri, M., Sharma, D., & Barrow, C. J. (2012). Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology, 30(1), 37–44. https://doi.org/10.1016/j.tibtech.2011.06.014

Quatrin, A., Pauletto, R., Maurer, L. H., Minuzzi, N., Nichelle, S. M., Carvalho, J. F. C., & Emanuelli, T. (2019). Characterization and quantification of tannins, flavonols, anthocyanins and matrix-bound polyphenols from jaboticaba fruit peel: A comparison between Myrciaria trunciflora and M. jaboticaba. Journal of Food Composition and Analysis, 78, 59–74. https://doi.org/10.1016/j.jfca.2019.01.018

Raks, V., Suod, H. Al, & Buszewski, B. (2018). Isolation , Separation , and Preconcentration of Biologically Active Compounds from Plant Matrices by Extraction Techniques. Chromatographia, 81, 189–202. https://doi.org/10.1007/s10337-017-3405-0

Ramos-Escudero, F., Casimiro-Gonzales, S., Fernández-Prior, Á., Cancino Chávez, K., Gómez-Mendoza, J., Fuente-Carmelino, L. de la, & Muñoz, A. M. (2021). Colour, fatty acids, bioactive compounds, and total antioxidant capacity in commercial cocoa beans (Theobroma cacao L.). LWT, 147, 111629. https://doi.org/10.1016/j.lwt.2021.111629

Rocchetti, G., Blasi, F., Montesano, D., Ghisoni, S., Marcotullio, M. C., Sabatini, S., & Lucini, L. (2019). Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food Research International, 115, 319–327. https://doi.org/10.1016/j.foodres.2018.11.046

Rocha, J. C. G., Procópio, F. R., Mendonça, A. C., Vieira, L. M., Perrone, Í. T., Barros, F. A. R., & Stringheta, P. C. (2017). Optimization of ultrasound-assisted extraction of phenolic compounds from jussara (Euterpe edulis M.) and blueberry (Vaccinium myrtillus) fruits. Food Science and Technology, 38(1), 45–53. https://doi.org/10.1590/1678-457x.36316

Santos, D. T., Veggi, P. C., & Meireles, M. A. A. (2010). Extraction of antioxidant compounds from Jabuticaba (Myrciaria cauliflora) skins: Yield, composition and economical evaluation. Journal of Food Engineering, 101(1), 23–31. https://doi.org/10.1016/j.jfoodeng.2010.06.005

Schulz, M., Biluca, F. C., Gonzaga, L. V., Borges, G. S. C., Vitali, L., Micke, G. A., & Fett, R. (2017). Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe edulis Martius) subjected to in vitro gastrointestinal digestion. Food Chemistry, 228, 447–454. https://doi.org/10.1016/j.foodchem.2017.02.038

Schulz, M., Borges, G. S. C., Gonzaga, L. V., Seraglio, S. K. T., Olivo, I. S., Azevedo, M. S., & Fett, R. (2015). Chemical composition, bioactive compounds and antioxidant capacity of juçara fruit (Euterpe edulis Martius) during ripening. Food Research International, 77, 125–131. https://doi.org/10.1016/j.foodres.2015.08.006

Seger, C., Sturm, S., & Stuppner, H. (2013). Mass spectrometry and NMR spectroscopy: modern high-end detectors for high resolution separation techniques – state of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations. Natural Product Reports, 30(7), 970. https://doi.org/10.1039/c3np70015a

Silva, N. A. da, Rodrigues, E., Mercadante, A. Z., & de Rosso, V. V. (2014). Phenolic Compounds and Carotenoids from Four Fruits Native from the Brazilian Atlantic Forest. Journal of Agricultural and Food Chemistry, 62(22), 5072–5084. https://doi.org/10.1021/jf501211p

Silva, L., N. O., Castelo‐Branco, V., A. Carvalho, A. G., C. Monteiro, M., Perrone, D., & G. Torres, A. (2017). Ethanol extraction renders a phenolic compounds‐enriched and highly stable jussara fruit ( Euterpe edulis M.) oil. European Journal of Lipid Science and Technology, 119(11), 1700200. https://doi.org/10.1002/ejlt.201700200

Silveira, T. F. F., de Souza, T. C. L., Carvalho, A. V., Ribeiro, A. B., Kuhnle, G. G. C., & Godoy, H. T. (2017). White açaí juice (Euterpe oleracea): Phenolic composition by LC-ESI-MS/MS, antioxidant capacity and inhibition effect on the formation of colorectal cancer related compounds. Journal of Functional Foods, 36, 215–223. https://doi.org/10.1016/j.jff.2017.07.001

Silveira, T. F. F., & Godoy, H. T. (2019). Non-Anthocyanin Phenolic Compounds in Açaí ( E uterpe oleracea Mart.) Juice by Ultrahigh-Performance Liquid Chromatography-Diode Array Detector (UHPLC-DAD): A Multivariate Optimization. Journal of Chromatographic Science, 57(2), 139–148. https://doi.org/10.1093/chromsci/bmy095

Stoev, G., & Stoyanov, A. (2007). Comparison of the reliability of the identification with diode array detector and mass spectrometry. Journal of Chromatography A, 1150(1–2), 302–311. https://doi.org/10.1016/j.chroma.2006.12.026

Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines, 5(3), 93. https://doi.org/10.3390/medicines5030093

Urbańska, B., Derewiaka, D., Lenart, A., & Kowalska, J. (2019). Changes in the composition and content of polyphenols in chocolate resulting from pre-treatment method of cocoa beans and technological process. European Food Research and Technology, 245(10), 2101–2112. https://doi.org/10.1007/s00217-019-03333-w

Vega-Arroy, D. J., Ruíz-Espinosa, H., Luna-Guevara, J. J., Luna-Guevara, M. L., Hernández-Carranza, P., Ávila-Sosa, R., & Ochoa-Velasco, C. E. (2017). Effect of solvents and extraction methods on total anthocyanins, phenolic compounds and antioxidant capacity of Renealmia alpinia (Rottb.) Maas peel. Czech Journal of Food Sciences, 35(No. 5), 456–465. https://doi.org/10.17221/316/2016-CJFS

Vieira, G. S., Marques, A. S. F., Machado, M. T. C., Silva, V. M., & Hubinger, M. D. (2017). Determination of anthocyanins and non-anthocyanin polyphenols by ultra performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI–MS) in jussara (Euterpe edulis) extracts. Journal of Food Science and Technology, 54(7), 2135–2144. https://doi.org/10.1007/s13197-017-2653-1

Viganó, J., de Aguiar, A. C., Veggi, P. C., Sanches, V. L., Rostagno, M. A., & Martínez, J. (2022). Techno-economic evaluation for recovering phenolic compounds from acai (Euterpe oleracea) by-product by pressurized liquid extraction. The Journal of Supercritical Fluids, 179, 105413. https://doi.org/10.1016/j.supflu.2021.105413

Wu, L., Li, L., Chen, S., Wang, L., & Lin, X. (2020). Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Separation and Purification Technology, 247, 117014. https://doi.org/10.1016/j.seppur.2020.117014

Wu, S., Dastmalchi, K., Long, C., & Kennelly, E. (2012). Metabolite profiling of jaboticaba (Myrciaria cauliflora) and other dark-colored fruit juices. Planta Medica, 78(11). https://doi.org/10.1055/s-0032-1320871

Xu, C.-C., Wang, B., Pu, Y.-Q., TO, J.-S., & Zhang, T. (2017). Advances in extraction and analysis of phenolic compounds from plant materials. Chinese Journal of Natural Medicines, 15(10), 721–731. https://doi.org/10.1016/S1875-5364(17)30103-6

Yamaguchi, K. K. de L., Pereira, L. F. R., Lamarão, C. V., Lima, E. S., & da Veiga-Junior, V. F. (2015). Amazon acai: Chemistry and biological activities: A review. Food Chemistry, 179, 137–151. https://doi.org/10.1016/j.foodchem.2015.01.055

Ziauddeen, N., Rosi, A., Del Rio, D., Amoutzopoulos, B., Nicholson, S., Page, P., … Mena, P. (2019). Dietary intake of (poly)phenols in children and adults: cross-sectional analysis of UK National Diet and Nutrition Survey Rolling Programme (2008–2014). European Journal of Nutrition, 58(8), 3183–3198. https://doi.org/10.1007/s00394-018-1862-3

Zubarev, R. A., & Makarov, A. (2013). Orbitrap Mass Spectrometry. Analytical Chemistry, 85(11), 5288–5296. https://doi.org/10.1021/ac4001223

Downloads

Published

23/01/2022

How to Cite

NEVES, N. de A. .; VALENTE, M. E. R. .; SILVA, I. F. da. Phenolic composition and extraction methods of Brazilian fruits: jabuticaba (Plinia spp.), açaí (Euterpe oleraceae Mart.), jussara (Euterpe edulis Mart.) and cocoa (Theobroma cacao L.). Research, Society and Development, [S. l.], v. 11, n. 2, p. e23211225640, 2022. DOI: 10.33448/rsd-v11i2.25640. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/25640. Acesso em: 26 apr. 2024.

Issue

Section

Review Article