The biomechanics of the bone and of metal, Zantex and PEEK bars in normal and osteoporotic condition, surrounding implants over protocols: an analysis by the Finite Element Method

Authors

DOI:

https://doi.org/10.33448/rsd-v11i2.26183

Keywords:

Osteoporosis; Dental prothesis; Finite element analysis.

Abstract

This study aims to assess the biomechanical behavior of the alveolar bone surrounding the implants over protocol with metal, Polyether ether ketone (PEEK) and Zantex bars, in normal and osteoporotic conditions.  For the simulation, geometric models of the mandibular arch were designed containing 5 implants and two variables. The first variable is the bone condition - normal and osteoporotic-, and the second is the material used in the protocol bars – metal, PEEK and Zantex. Simulation was performed using the Finite Elements Method. Results showed that the largest load peaks were concentrated in the medullary bone, both in the normal and osteoporotic conditions. The osteoporotic bone was subjected to more loads than the normal bone in all simulated structures. PEEK and Zantex bars are generally effective load dissipators, showing better performance than Ni-Cr in both types of bone. It is important to assess the bone condition and its relationship with the material used in protocol-type prostheses infrastructure.  

References

Alghamdi, H. S. & Jansen, J. A. (2020) The development and future of dental implants. Dental Materials Journal, 39(2), 167–172.

Anzolin, D., et al. (2017). Análise da resistência pelo método dos elementos finitos de barras de protocolo confeccionadas em PEEK reforçado por fibra de carbono. In: 34th SBPqO Annual Meeting, 2017, Campinas - SP. Brazilian Oral Research, 267.

Aquino, M. M. O., et al. (2018) Cantilever Protocol Bars in Acrylated Polyetheretherketone (Peek): A Mechanical Compression Assay. OHDM – Oral Health and Dental Management, 17,1022.

Bechir, E. S., el al. (2016). The Advantages of BioHPP Polymer as Superstructure Material in Oral Implantology. Materiale Plastice, 53(3), 394-98.

Bergamo, E., et al. (2019) Confiabilidade e modo de falha de próteses parciais fixas implantossuportadas com infraestrutura de compósito reforçado por fibra. PróteseNews, 2019(6), 672-680.

Bonon, A. J., et al. (2016). Physicochemical characterization of three fiber-reinforced epoxide-based composites for dental applications. Materials Science and Engineering, 69, 905-913.

Campbell, S. D., et al. (2017). Removable partial dentures: The clinical need for innovation. J Prosthet Dent., 118(3), 273-80.

Carvalho, G. A., et al. (2017). Polyether ether ketone in protocol bars: Mechanical behavior of three designs. J Int Oral Health, 9(5), 202-206.

Chaim, A., el al. (2016). Alterações no complexo maxilo-mandibular na osteoporose: revisão de literatura. Revista Uningá, 49, 79-84

Craig, R. G. (1985). Restorative Dental Materials. (7a.ed.), Mosby.

Franco, A. B., et al. (2017). Osteoporosis and endodontic access: Analysis of fracture using finite element method. IJODM, 16,1-5.

Geng, Z., et al. (2021). Nano-needle strontium-substituted apatite coating enhances osteoporotic osseointegration through promoting osteogenesis and inhibiting osteoclastogenesis. Bioactive Materials, 6, 905-915.

Helgason, B., et al. (2008). Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomechanics, 23(2), 135-46.

Jaros, O. A. L., et al. (2018). Biomechanical behavior of an implant system using polyether ether ketone bar: Finite element analysis. J Int Soc Prevent Communit Dent, 8, 446-50.

Kribbs, P. J. (1990). Comparison of mandibular bone in normal and osteoporotic women. University of Washington, 63, 219-22.

Leekholm, U., et al. (1998). Surgical considerations and possible shortcomings of host sites. J Prosthet Dent, 79(1),43-8.

Manolea, H. O., et al. (2017). Current Options of Making Implant Supported Prosthetic Restorations to Mitigate the Impact of Occlusal Forces. Defect and Diffusion Forum, 376, 66-77.

Mattos, C. M. A., et al. (2012) Numerical analysis of the biomechanical behaviour of a weakened root after adhesive reconstruction and post-core rehabilitation. J Dent. 40(5), 423-32.

Najeeb, S., et al. (2015). Nanomodified peek dental implants: Bioactive composites and surface modification - A review. Int J Dent, 2015, 1-7.

Rodrigues, J. T., et al. (2014). Avaliação de pacientes odontológicos para auxílio no diagnóstico precoce da osteoporose. Rev Bras Odontol, 71(2), 211-5.

Schwitalla, A. D., et al. Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone. J Biomechanics, 48(1),1-7.

Vallittu, P. K. (1998). The effect of glass fiber reinforcement on the racture resistance of a provisional fixed partial denture. J. Prosthet. Dent, 79(2), 125-129.

Yeler, D. Y., et al. (2016). Bone quality and quantity measurement techniques in dentistry. Cumhuriyet. 19(1), 73-86.

Downloads

Published

06/02/2022

How to Cite

FRANCO, A. B. G.; CARVALHO, G. A. P. de .; FRANCO, A. G. .; NAPIMOGA, J. T. C.; NAPIMOGA, M. H.; BUENO, C. E. da S. .; AMARAL, F. L. B. do. The biomechanics of the bone and of metal, Zantex and PEEK bars in normal and osteoporotic condition, surrounding implants over protocols: an analysis by the Finite Element Method. Research, Society and Development, [S. l.], v. 11, n. 2, p. e59111226183, 2022. DOI: 10.33448/rsd-v11i2.26183. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/26183. Acesso em: 29 feb. 2024.

Issue

Section

Health Sciences