Influence of post-ceramic processing on the synthesis of brushite/SrO/chitosan bone cement

Authors

DOI:

https://doi.org/10.33448/rsd-v11i7.30021

Keywords:

Bone cement; Brushite; Strontium; Chitosan; Processing; Materials teaching.

Abstract

Scientific and technological advances in the development of bone cements have been undergoing changes in order to obtain properties that are suitable for specific applications. The incorporation of other materials such as chitosan, collagen, oxides, polyethylene glycol, among others, which replace or even incorporate characteristics not present, are well explored, however, the influence of the processing of ceramic powders has been little studied. In this sense, the present work obtained the brushite/SrO/chitosan bone cement through the dissolution/precipitation method, using a mixture of wollastonite/strontium powder applied the methods of removing moisture by oven and desiccator. The samples were characterized through the analysis of curing and setting time, compressive strength, X-ray diffraction (XRD) and optical microscopy (OM). The results showed that the moisture removal method promotes variation of phases formed in the cements, as observed in the XRD, generating an improvement in the compressive strength. The temperature and time of the cements showed a reduction during their curing for the MPC samples. The microscopic analysis showed that the moisture removal method promoted greater porosity in the internal structure of the cement, which can provide an improvement in its compatibility with the applied bone region.

References

Anselmetti, G. C., Manca, A., Kanika, K., Murphy, K., Eminefendic, H., Masala, S., & Regge, D. (2009). Temperature measurement during polymerization of bone cement in percutaneous vertebroplasty: an in vivo study in humans. Cardiovascular and Interventional Radiology, 32(3), 491–498.

Belkoff, S. M., & Molloy, S. (2003). Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty. Spine, 28(14), 1555–1559.

Colorado, H. A., Hiel, C. C., Hahn, T., & Yang, J. (2018). 13 Wollastonite-Based Chemically Bonded Phosphate Ceramic Composites.

Colorado, H. A., Wang, Z., & Yang, J.-M. (2015). Inorganic phosphate cement fabricated with wollastonite, barium titanate, and phosphoric acid. Cement and Concrete Composites, 62, 13–21. https://doi.org/https://doi.org/10.1016/j.cemconcomp.2015.04.014

Dai, J., Fu, Y., Chen, D., & Sun, Z. (2021). A novel and injectable strontium-containing hydroxyapatite bone cement for bone substitution: A systematic evaluation. Materials Science and Engineering: C, 124, 112052. https://doi.org/https://doi.org/10.1016/j.msec.2021.112052

Fada, R., Shahgholi, M., & Karimian, M. (2021). Improving the mechanical properties of strontium nitrate doped dicalcium phosphate cement nanoparticles for bone repair application. Ceramics International, 47(10, Part A), 14151–14159. https://doi.org/https://doi.org/10.1016/j.ceramint.2021.02.002

Farvardin, A., Bakhtiarinejad, M., Murphy, R. J., Basafa, E., Khanuja, H., Oni, J. K., & Armand, M. (2021). A biomechanically-guided planning and execution paradigm for osteoporotic hip augmentation: Experimental evaluation of the biomechanics and temperature-rise. Clinical Biomechanics, 87, 105392. https://doi.org/https://doi.org/10.1016/j.clinbiomech.2021.105392

Hofmann, M. P., Mohammed, A. R., Perrie, Y., Gbureck, U., & Barralet, J. E. (2009). High-strength resorbable brushite bone cement with controlled drug-releasing capabilities. Acta Biomaterialia, 5(1), 43–49. https://doi.org/https://doi.org/10.1016/j.actbio.2008.08.005

Hurle, K., Oliveira, J. M., Reis, R. L., Pina, S., & Goetz-Neunhoeffer, F. (2021). Ion-doped Brushite Cements for Bone Regeneration. Acta Biomaterialia, 123, 51–71. https://doi.org/https://doi.org/10.1016/j.actbio.2021.01.004

Kashimbetova, A., Slámečka, K., Casas-Luna, M., Oliver-Urrutia, C., Ravaszová, S., Dvořák, K., Čelko, L., & Montufar, E. B. (2022). Implications of unconventional setting conditions on the mechanical strength of synthetic bone grafts produced with self-hardening calcium phosphate pastes. Ceramics International, 48(5), 6225–6235. https://doi.org/https://doi.org/10.1016/j.ceramint.2021.11.163

Lee, H.-J., Kim, B., Padalhin, A. R., & Lee, B.-T. (2019). Incorporation of chitosan-alginate complex into injectable calcium phosphate cement system as a bone graft material. Materials Science and Engineering: C, 94, 385–392. https://doi.org/https://doi.org/10.1016/j.msec.2018.09.039

Li, X., & Chang, J. (2004). Synthesis of Wollastonite Single Crystal Nanowires by a Novel Hydrothermal Route. Chemistry Letters, 33(11), 1458–1459. https://doi.org/10.1246/cl.2004.1458

Lode, A., Heiss, C., Knapp, G., Thomas, J., Nies, B., Gelinsky, M., & Schumacher, M. (2018). Strontium-modified premixed calcium phosphate cements for the therapy of osteoporotic bone defects. Acta Biomaterialia, 65, 475–485. https://doi.org/10.1016/j.actbio.2017.10.036

Ly, O., Monchau, F., Rémond, S., Lors, C., Jouanneaux, A., Debarre, É., & Damidot, D. (2020). Optimization of the formulation of an original hydrogel-based bone cement using a mixture design. Journal of the Mechanical Behavior of Biomedical Materials, 110, 103886. https://doi.org/https://doi.org/10.1016/j.jmbbm.2020.103886

Martins, M. G. (2021). Caracterização de uma argila da região norte de Minas Gerais para aplicações industriais. In Universidade Federal de Ouro Preto. https://200.239.128.125/handle/35400000/2965

Morúa, O. C., Cardoso, M. J. B., da Silva, H. N., Carrodeguas, R. G., Rodríguez, M. A., & Fook, M. V. L. (2021). Synthesis of brushite/polyethylene glycol cement for filler in bone tissue injuries. Cerâmica, 67, 289–294.

Morúa, O. C., Cardoso, M. J. B., Farias, K. A. S., Barbero, M. A. R., Carrodeguas, R. G., & Fook, M. V. L. (2017). Síntese e Avaliação de Cimento Ósseo com Diferentes Concentrações de Brushita. 1, 58–63.

Şahin, E., & Çiftçioğlu, M. (2021). Compositional, microstructural and mechanical effects of NaCl porogens in brushite cement scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 116, 104363. https://doi.org/https://doi.org/10.1016/j.jmbbm.2021.104363.

Sanosh, K. P., Chu, M.-C., Balakrishnan, A., Kim, T. N., & Cho, S.-J. (2009). Utilization of biowaste eggshells to synthesize nanocrystalline hydroxyapatite powders. Materials Letters, 63(24–25), 2100–2102.

Sarkar, A., & Kannan, S. (2014). In situ synthesis, fabrication and Rietveld refinement of the hydroxyapatite/titania composite coatings on 316L SS. Ceramics International, 40(5), 6453–6463. https://doi.org/https://doi.org/10.1016/j.ceramint.2013.11.096.

Silva, L. P., Ribeiro, M. D. P., Trichês, E. S., & Motisuke, M. (2019). Brushite cement containing gelatin: evaluation of mechanical strength and in vitro degradation. Cerâmica, 65, 261–266.

Sun, L., & Guo, D. (2022). Study on the improvement of compressive strength and fracture toughness of calcium phosphate cement. Ceramics International. https://doi.org/https://doi.org/10.1016/j.ceramint.2022.03.128.

Tamimi, F., Kumarasami, B., Doillon, C., Gbureck, U., Nihouannen, D. Le, Cabarcos, E. L., & Barralet, J. E. (2008). Brushite-collagen composites for bone regeneration. Acta Biomaterialia, 4(5), 1315–1321. https://doi.org/10.1016/j.actbio.2008.04.003.

Vezenkova, A., & Locs, J. (2022). Sudoku of porous, injectable calcium phosphate cements – Path to osteoinductivity. Bioactive Materials, 17, 109–124. https://doi.org/https://doi.org/10.1016/j.bioactmat.2022.01.001

Published

30/05/2022

How to Cite

SANTOS, M. A. .; GONÇALVES, G. V. da S. .; LIMA, E. P. N. .; CARDOSO, M. J. B. .; SOUSA, W. J. B. de .; SILVA NETO, J. E. da .; FARIAS, K. A. S. .; FOOK, M. V. L. . Influence of post-ceramic processing on the synthesis of brushite/SrO/chitosan bone cement. Research, Society and Development, [S. l.], v. 11, n. 7, p. e43711730021, 2022. DOI: 10.33448/rsd-v11i7.30021. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/30021. Acesso em: 26 apr. 2024.

Issue

Section

Engineerings