Development stage at packaging affects viability of in vitro produced bovine embryos




Embryonic development; Embryonic transport; in vitro fertilization; OPU-IVF.


The objective of this study was to evaluate the viability of in vitro produced embryos (IVPE) bovine at different developmental stages, maintained at 36ºC at different transport times. On the seventh day of in vitro culture, grade I and II embryos at early blastocyst, blastocyst, and expanded blastocyst stages were selected, packaged and randomly distributed to three transport times in a portable incubator at 36°C: 6, 9 and 12 hours. After the treatment time, embryos were re-cultured in culture medium for 72 hours and evaluated for quality and development. Hatching and degeneration rate data were analyzed by Chi-square test. Embryos packaged at the expanded blastocyst stage showed higher hatching rates and lower degeneration rates. Embryos packaged at the expanded blastocyst stage showed higher viability compared to those at early blastocyst, regardless of transport time, and blastocysts transported for 6 and 9 hours.


Agarwal, A., Said, T. M., Bedaiwy, M. A., Banerjee, J., & Alvarez, J. G. (2006). Oxidative stress in an assisted reproductive techniques setting. Fertility and Sterility, 86 (3), 503-512. doi: 10.1016/j.fertnstert.2006.02.088.

Barnwell, C. V., Farin, P. W., Ashwell, C. M., Farmer, W. T., Galphin, S. P., Jr & Farin, C. E. (2016). Differences in mRNA populations of short and long bovine conceptuses on Day 15 of gestation. Molecular, Reproduction and Development, 83 (5), 424–441. doi:10.1002/MRD.22640.

Carrocera, S., Caamaño, J. N., Trigal, B., Martín, D., & Díez, C. (2016). Developmental kinetics of in vitro-produced bovine embryos: An aid for making decisions. Theriogenology 85 (5), 822–827. doi:10.1016/j.theriogenology.2015.10.028.

Cavalieri, F. L. B., Andreazzi, M. A., Colombo, A. H. B., Emanuelli, I. P., Moreski, D. A. B., & Silva, W. M. (2015). Estudo sobre o cultivo in vitro de embriões bovinos durante o transporte. Ars Veterinaria, 31(1), 7-11. doi: 10.15361/2175-0106.2015v31n1p07-11.

Farin, C. E., Farin, P. W., & Piedrahita, J. A. (2004). Development of fetuses from in vitro - produced and cloned bovine embryos. Journal of Animal Science, 82, 53-62. doi: 10.2527/2004.8213_supplE53x.

Fenwick, J., Platteau, P., Murdoch, A. P. & Herbert, M. (2002). Time from insemination to first cleavage predicts developmental competence of human preimplantation embryos in vitro. Human Reproduction, 17 (2), 407–412. doi: 10.1093/humrep/17.2.407.

Gupta, M. K., Uhm, S. J., & Lee, H. T. (2010). Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertility and Sterility, 93 (8), 2602-2607. doi: 10.1016/j.fertnstert.2010.01.043.

Holm, P., Schimidt, M. H., Greve, T. & Callesen, H. (1999). High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inusitol with or without serum-proteins. Theriogenology, 52 (4), 683-700. doi: 10.1016/S0093-691X(99)00162-4.

Jainudeen, M. R., Wahid, H., & Hafez, E.S.E. (2004). Indução da ovulação, Produção e Transferência de Embriões. In HAFEZ, E.S.E & HAFEZ, B. (Ed.), Reprodução Animal (pp. 409-434). São Paulo, Brasil: Manole.

Magli, M. C., Gianaroli, L., Ferraretti, A. P., Lappi, M., Ruberti, A. & Farfalli, V. (2007). Embryo morphology and development are dependent on the chromosomal complement. Fertility and Sterility, 87 (3), 534–541. doi: 10.1016/j.fertnstert.2006.07.1512.

Mahmoudzadeh, A. R., Van Soom, A., Bols, P., Ysebaert, M. T., & De Kruif, A. (1995). Optimization of a simple vitrification procedure for bovine embryos produced in vitro: effect of developmental stage, two-step addition of cryoprotectant and sucrose dilution on embryonic survival. Reproduction, 103 (1), 33–39. doi:10.1530/jrf.0.1030033.

Marinho, L. S. R., Untura, R. M., Morotti, F., Moino, L. L., Rigo, A. G., Sanches, B.V., Pontes, J. H. F. & Seneda, M. M. (2012). Large-scale programs for recipients of in vitro-produced embryos. Animal Reproduction, 9 (3), 323-328. Retrieved February 13, 2020, from

Memili, E & First, N. L. (2000). Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote, 8 (1), 87-96. doi: 10.1017/s0967199400000861.

Munoz, M., Uyar, A., Correia, E., Diez, C., Fernandez-Gonzalez, A., Caamano, J. N., Martinez-Bello, D., Trigal, B., Humblot, P., Ponsart, C., Guyader-Joly, C., Carrocera, S., Martin, D., Marquant Le Guienne, B., Seli, E. & Gomez, E. (2014). Prediction of pregnancy viability in bovine in vitro-produced embryos and recipient plasma with Fourier transform infrared spectroscopy. Journal of Dairy Science, 97 (9), 5497-5507. doi: 10.3168/jds.2014-8067.

Pacheco, S. L., Hoppen, A. R. & De Souza Rosa, F. (2018). Comparação da taxa de prenhez conforme o estágio de desenvolvimento de embriões produzidos in vitro e transferidos em bovinos de corte e leite. Revista de Ciências Agroveterinárias e Alimentos, 2. Retrieved March 16, 2020, from

Paula-Lopes, F. F. & Hansen, P. J. (2002). Heat shock-induced apoptosis in preimplantation bovine embryos is a developmentally regulated phenomenon. Biology of reproduction, 66 (4), 1169–1177. doi: 10.1093/biolreprod/66.4.1169.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J. & Shitsuka, R. (2018). Metodologia do trabalho científico [e-book]. Santa Maria, RS: UFSM, NTE. Retrieved April 2, 2020, from

R Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Viena, Áustria (2018). Retrieved July 3, 2019, from

Sanches, B. V., Marinho, L. S., Filho, B. D., Pontes, J. H., Basso, A. C., Meirinhos, M. L., Silva-Santos, K. C., Ferreira, C. R. & Seneda, M. M. (2013). Cryosurvival and pregnancy rates after exposure of IVF-derived Bos indicus embryos to forskolin before vitrification. Theriogenology, 80 (4), 372-377. doi: 10.1016/j.theriogenology.2013.04.026.

Silva, L. A. (2010). Taxa de gestação e mortalidade embrionária em receptoras de embriões produzidos in vitro, após sincronização do estro com diferentes protocolos hormonais (dissertação de mestrado). Universidade Federal de Minas Gerais, Belo Horizonte, Brasil. Retrieved January 21, 2019, from

Stinshoff, H., Wilkening, S., Hanstedt, A., Brüning, K. & Wrenzycki, C. (2011). Cryopreservation affects the quality of in vitro produced bovine embryos at the molecular level. Theriogenology, 76 (8), 1433-1441. doi: 10.1016/j.theriogenology.2011.06.013.

Stojkovic, M., Machado, S. A., Stojkovic, P., Zakhartchenko, V., Hutzler, P., Gonçalves, P, B. & Wolf, E. (2001). Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biology of Reproduction, 64 (3), 904-909. doi: 10.1095/biolreprod64.3.904.

Sugimura, S., Akai, T., Hashiyada, Y., Somfai, T., Inaba, Y., Hirayama, M., Yamanouchi, T., Matsuda, H., Kobayashi, S., Aikawa, Y., Ohtake, M., Kobayashi, E., Konishi, K. & Imai, K. (2012). Promising System for Selecting Healthy In Vitro–Fertilized Embryos in Cattle. PlosOne, 7 (5), e36627. doi:10.1371/journal.pone.0036627.

Teixeira, J. R. (2013). Transporte e cultivo de embriões bovinos por 24, 48 e 72 horas antes da transferência (dissertação de mestrado). Universidade Federal de Uberlândia, Uberlândia, Brasil. Retrieved January 21, 2019, from

Van Soom, A., Ysebaert, M. T., & de Kruif, A. (1997). Relationship between timing of development, morula morphology, and cell allocation to inner cell mass and trophectoderm in in vitro-produced bovine embryos. Molecular Reproduction and Development, 47 (1), 47–56. doi:10.1002/(sici)1098-2795(199705)47:1<47::aid-mrd7>;2-q.



How to Cite

SILVEIRA, M. da M.; MARQUES, T. C.; SILVA, M. A. P. da; LEÃO, K. M. Development stage at packaging affects viability of in vitro produced bovine embryos. Research, Society and Development, [S. l.], v. 9, n. 6, p. e134963615, 2020. DOI: 10.33448/rsd-v9i6.3615. Disponível em: Acesso em: 31 jan. 2023.



Agrarian and Biological Sciences