Producción y adición de bacterias biomineralizantes encapsuladas en hormigón de construcción

Autores/as

DOI:

https://doi.org/10.33448/rsd-v12i4.41232

Palabras clave:

Carbonato de calcio; Alginato de sodio; Hormigón; Biomineralización; Resistencia mecánica.

Resumen

Se ha investigado la producción de carbonato de calcio para el cierre de fisuras en el hormigón mediante la acción de bacterias biomineralizantes; sin embargo, estas bacterias son frágiles y susceptibles al medio de reacción, por lo que deben ser protegidas mediante encapsulación, para que puedan realizar el proceso de biomineralización cuando se le solicite. Esta investigación abarcó el estudio y optimización de la producción de cápsulas de alginato de sodio para su posterior encapsulación de bacterias biomineralizantes. La investigación también investigó el efecto de estas cápsulas (agregadas en diferentes porcentajes) en masas de concreto utilizando cemento Portland tipo CP II – E (norma ABNT NBR) y formuladas a partir de la ecuación de Andreassen, caracterizando las pastas obtenidas mediante ensayos en estado fresco y endurecido. Los ensayos de hinchamiento indicaron que las cápsulas de alginato de sodio proporcionaron un ambiente adecuado para recibir las bacterias y nutrirlas hasta su uso, además de una adecuada resistencia mecánica para su inserción (y mezclado) en el concreto. Entre las condiciones investigadas, aquella donde se utilizó el coeficiente de Andreassen igual a q=0,37 y con la adición de 1,5% de cápsulas de alginato de sodio fue la que presentó los resultados más promisorios de la investigación; y después de 28 días de curado, la resistencia mecánica a la compresión encontrada fue de 45,4MPa, con el valor dentro de la ABNT NBR 11578, ya que establece una resistencia mínima de 32MPa.

Citas

Ahmed, I. et al. (2007) Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb nov. International Journal of Systematic and Evolutionary Microbiology, 57 (5), 1117-1125. http://dx.doi.org/10.1099/ijs.0.63867-0.

Associação Brasileira de Normas Técnicas. (2010). Concreto – Determinação da resistência à tração na flexão de corpos de prova prismáticos. (ABNT NBR No. 12142)

Associação Brasileira de Normas Técnicas. (1996). Concreto - Preparo, controle e recebimento. (ABNT NBR No. 12655).

Associação Brasileira de Normas Técnicas. (1998). Concreto - Amostragem de concreto fresco. (ABNT NBR NM No. 33).

Associação Brasileira de Normas Técnicas. (1998). Concreto – Determinação da consistência pelo abatimento do tronco de cone. (ABNT NBR NM No. 67).

Associação Brasileira de Normas Técnicas. (1994). Moldagem e cura de Corpos de Prova cilíndricos ou prismáticos de concreto. (ANBT NBR No. 5738).

Associação Brasileira de Normas Técnicas. (1994). Concreto - Ensaio de Compressão de Corpos-de-prova cilíndricos. (ABNT NBR No. 5739).

Associação Brasileira de Normas Técnicas. (2014). Projeto de estruturas de concreto - Procedimento. (ABNT NBR No. 6118).

Associação Brasileira de Normas Técnicas. (1992). Concreto – para fins estruturais. (ABNT NBR No. 8953).

Associação Brasileira de Normas Técnicas. (2005). Argamassa e concreto endurecidos – Determinação de absorção de água, índice de vazios e massa específica. (ABNT NBR No. 9778).

Associação Brasileira de Normas Técnicas. (1991). Cimento Portland Composto. (ABNT NBR No. 11578).

Biasi, L. A. (2022). Adubação orgânica na produção, rendimento e composição do óleo essencial da alfavaca quimio tipo eugenol. Horticultura Brasileira, 1 (27), 35-39.

Bissonnette, B.; Pierre, P.; Pigeon, M. (1999). Influence of key parameters on drying shrinkage of cementitious materials. Cement and Concrete Research, 29 (10), 1655-1662. http://dx.doi.org/10.1016/s0008-8846(99)00156-8.

Boquet, E.; Boronat, A.; Ramos-Cormenzana, A. (1973). Production of Calcite (calcium carbonate) Crystals by Soil Bacteria is a general Phenomenon, Nature. Springer Science and Business Media LLC, 246 (5434), 527-529. http://dx.doi.org/10.1038/246527a0.

Brancalhão, R.M.C.; Cavéquia, M. C. Microscópio Óptico - microscópio de luz. https://projetos.unioeste.br/projetos/microscopio/index.php?option=com_phocagallery&view=category&id=76&Itemid=140.

Brunauer, S.; Copeland, L. E. (1964). The chemistry of concrete. Scientific American: a division of Nature America, 4 (210), 80-93.

Cabrera, J. G. (1996). Deterioration of concrete due to reinforcement steel corrosion. Cement and Concrete Composites, 18 (1), 47-59. https://doi.org/10.1016/0958-9465(95)00043-7.

Carmona, J. P. S. F. (2016). Utilização da Biotecnologia para a estabilização de solos: Precipitação de CaCO3 por via enzimática. [Dissertação de Mestrado, Faculdade de Ciências e Tecnologia]. Universidade de Coimbra. https://estudogeral.uc.pt/handle/10316/98908.

Castro, A. L.; Liborio, J. B. L.; Pandolfelli, V. C. Reologia de concretos de alto desempenho aplicados na construção civil - Revisão. Cerâmica, 57, 63-75.

Cruz, C. M. (2019). Estudo da biomineralização aplicada a concretos de construção civil e sua viabilidade tecnológica. [Dissertação Mestrado, Curso de Engenharia e Ciências de Materiais]. Universidade de São Paulo Faculdade de Zootecnia e Engenharia de Alimentos.

Farias, Y. B.; Noreña, C. P. Z. (2019). Reverse encapsulation using double controlled gelification for the production of spheres with liquid light soy sauce-core. International Journal of Gastronomy and Food Science, 16 (100137), 1-7. http://dx.doi.org/10.1016/j.ijgfs.2019.100137.

Faria, G. C.; Silva, D. S. (2019). Análise da evolução da profundidade de carbonatação em estruturas de concreto ao longo do tempo. [Trabalho de conclusão de Curso de Graduação, Curso de Engenharia Civil]. Universidade Estadual de Santa Catarina. http://repositorio.unesc.net/handle/1/7132.

Filho, L. A. E.; Alves, T. R.; Fernandes, V. A. (2017). Bioconcreto: Estudo exploratório de concreto com introdução de Bacillus Subtilis, Bacillus Licheniformis, acetato de cálcio e ureia. [Trabalho de Conclusão de Curso, Graduação em Engenharia Civil]. Universidade Federal de Goiás. https://files.cercomp.ufg.br/weby/up/140/o/ESTUDO_EXPLORAT%C3%93RIO_DE_CONCRETO_COM_INTRODU%C3%87%C3%83O_DE_BACILLUS_SUBTILIS__BACILLUS_LICHENIFORMIS__ACETATO_DE_C%C3%81LCIO_E_UREIA..pdf.

Freitas, A. Á.; Romão, E. M.; Anício, S. O.; Barros, A. J. (2021) Bioconcrete: A review of its application in civil construction. Research, Society and Development, 10 (4). https://doi.org/10.33448/rsd-v10i4.14270.

Fusco, P.B. (2012). Tecnologia do concreto estrutural: tópicos aplicados. Editora PINI.

Garcia, A.; Spim, J. A.; Santos, C. A. (2012). Ensaio dos Materiais. Editora LTC.

Gato, M. C. S.; Muniz, W.; Silva, K. B.; Sá, M. S. (2021). Self-regeneration of cracks in concrete from a bacteria culture. Research, Society and Development, 10 (6), 1-13. http://dx.doi.org/10.33448/rsd-v10i6.15734.

Gonçalves, E. A. B. (2015). Estudo de patologias e suas causas nas estruturas de concreto armado de obras de edificações. [Disssertação de Doutorado, Curso de Engenharia Civil]. Universidade Federal do Rio de Janeiro. http://repositorio.poli.ufrj.br/monografias/monopoli10014879.pdf.

Global Cement and Concrete Association. (2019). Key Facts. Londres: GCCA.

HammeS, F.; Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1, 3-7. http://dx.doi.org/10.1023/a:1015135629155.

Jonkers, H. M. (2007). Self-Healing Concrete: a biological approach. Springer Series in Materials Science, 195-204. http://dx.doi.org/10.1007/978-1-4020-6250-6_9.

Jonkers, H. M., Schlangen, E. (2007). Self-healing of cracked concrete: A bacterial approach. Fracture mechanics of concrete and concrete sructures, Catania, 17 (22), 1821–1826. http://framcos.org/FraMCoS-6/164.pdf.

Jonkers, H. M. et al. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering, 36 (2), 230-235. http://dx.doi.org/10.1016/j.ecoleng.2008.12.036.

Khalic, W. Ehsan, M. B. (2016). Crack healing in concrete using various bio influenced self-healing techniques. Construction and Building Materials, 102 (1), 349-357. http://dx.doi.org/10.1016/j.conbuildmat.2015.11.006.

Lee, K. Y.; Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37 (1), 106-126. http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003.

Lee, Y. S.; Park, W. (2018). Current challenges and future directions for bacterial self-healing concrete. Applied Microbiology and Biotechnology, 102 (7), 3059-3070. https://doi.org/10.1007/s10295-008-0514-7.

Li, C.V.; Herbert, E. (2012). Robust self-healing concrete for sustainable infrastructure. Journal of Advanced Concrete Technology, 10 (6), 207-218. http://dx.doi.org/10.3151/jact.10.207.

Li, M.; Li, V. C. (2011). Cracking and healing of engineered cementitious composites under chloride environment. ACI Materials Journal, 108 (3), 333-340. https://doi.org/10.14359/51682499.

Mehta, P. K.; Monteiro, P. J. M. (2008) Concreto: Microestrutura, propriedades e materiais. São Paulo: Ibracon.

Menezes, C. R. et al. (2013). Microencapsulação de probióticos: avanços e perspectivas. Ciência Rural, 43 (7), 1309-1316. http://dx.doi.org/10.1590/s0103-84782013005000084.

Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31, 601-605. https://doi.org/10.1016/j.cemconcomp.2008.12.010.

Muynck, W.; Belie, N.; Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: a review. Ecological Engineering, 36 (2), 118-136. http://dx.doi.org/10.1016/j.ecoleng.2009.02.006.

Neville, A. M.; Brooks, J. J. (2010). Tecnologia do concreto. Bookman Editora Ltda.

Neville, A. M. (2016). Propriedades do concreto. Bookman Editora Ltda.

Oliveira, I. R. et al. (2000). Dispersão e empacotamento de partículas. Fazendo Arte.

Park, S-J.; Park, J-M.; Kim, W-J.; Ghim, S-Y. (2012). Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar. Journal of Microbiology and Biotechnology, 22 (11), 1568-1574. http://dx.doi.org/10.4014/jmb.1202.02047.

Peruzzi, A. P. (2002). Comportamento das Fibras de Vidro Convencionais em matriz de cimento Portland modificada com látex e adição de sílica ativa. [Dissertação Doutorado, Curso de Arquitetura]. Escola de Engenharia de São Carlos da Universidade de São Paulo. https://www.teses.usp.br/teses/disponiveis/18/18131/tde-13112002-180613/publico/AntonioPPeruzzi.pdf.

Pró Lab - Materiais para Laboratório. Entenda como funciona um microscópio óptico. https://www.prolab.com.br/blog/equipamentos-aplicacoes/entenda-como-funciona-um-microscopio-optico/.

Reis, J. F. A. (2008). Determinação de parâmetros reológicos de concretos através do ensaio de abatimento de tronco de cone modificado: estudo de caso. [Dissertação Mestrado, Faculdade de Engenharia Mecânica]. Universidade Estadual Paulista. https://repositorio.unesp.br/bitstream/handle/11449/94495/reis_jfa_me_ilha.pdf?sequence=1.

Reis, T. (2019). Síntese de hidrogéis de alginato reticulados com nanofibras de lactato de cálcio/poli(óxido de etileno) obtidas por eletrofiação. [Tabalho de Conclusão de Curso Graduação, Curso de Química] Universidade Federal de Santa Catarina. https://repositorio.ufsc.br/bitstream/handle/123456789/202624/TCC%20II%20-%20Tamara%20Reis.pdf?sequence=1.

ROCHA, L. N. et al. (2019). Estudo comparativo de desempenho entre concreto convencional e o concreto com adições de fibra de aço. Revista de Engenharia e Tecnologia, 11(4), 267-276. https://revistas2.uepg.br/index.php/ret/article/view/14275.

Scott, J. E. (1968). Periodate oxidation, pKa and conformation of hexuronic acids in polyuronides and mucopolysaccharides. Biochimica et Biophysica Acta (BBA) – General Subjects, 170 (2), 471-473. https://doi.org/10.1016/0304-4165(68)90040-8.

Seifan, M; Samani, A. K.; Berenjian, A. (2016). Bioconcrete: next generation of self-healing concrete. Applied Microbiology and Biotechnology, 100 (6), 2591-2602. https://doi.org/10.1007/s00253-016-7316-z.

Shinano, H. (1972). Studies of Marine Microorganisms Taking Part in the Precipitation of Calcium Carbonate-II. Nippon Suisan Gakkaishi, 38 (7), 717-725. http://dx.doi.org/10.2331/suisan.38.717.

Snoeck, D. et al. (2018). Recommendation of RILEM TC 260-RSC: testing sorption by superabsorbent polymers (sap) prior to implementation in cement-based materials. Materials and Structures, 51 (5), 1-7. http://dx.doi.org/10.1617/s11527-018-1242-8.

Souradeep, G.; Kua, H. W. (2016). Encapsulation technology and techniques in self-healing concrete. Journal of Materials in Civil Engineering, 28 (12). http://dx.doi.org/10.1061/(asce)mt.1943-5533.0001687.

Tebo, B. M.; Johnson, H. A.; Mccarthy, J. K.; Templeton, A. S. (2005). Geomicrobiology of manganese (II) oxidation. Trends In Microbiology, 13 (9), 421-428. http://dx.doi.org/10.1016/j.tim.2005.07.009.

Trenson, G. (2017). Application of pH responsive hydrogel encapsulated bacteria for self-healing concrete. [Dissertação Mestrado, Engenharia Civil]. Ghent University, Gante.

Van Tittelboom, K. et al. (2010). Use of bacteria to repair cracks in concrete. Cement Concrete Research, 6 (1), 157-166. http://dx.doi.org/10.1016/j.cemconres.2009.08.025.

Van Tittelboom, K. et al. (2011). Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent. Cement and Concrete Composites, 33 (4), 497-505. http://doi.org/10.1016/j.cemconcomp.2011.01.004.

Van Tittelboom, K.; et al. (2013). Self-Healing in Cementitious Materials—A Review. Materials, 6 (6), 2182-2217. http://dx.doi.org/10.3390/ma6062182.

Velloso, F. T. (2008). Desenvolvimento e caracterização de microcápsulas de alginato/quitosana contendo ácido retinóico e óleo de babaçu. [Dissertação Doutorado, Curso de Ciências Farmacêuticas]. Universidade Federal de Pernambuco. https://repositorio.ufpe.br/handle/123456789/2946.

Wang, J.Y.; De Belie, N.; Verstraete, W. (2012). Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. Journal of Industrial Microbiology and Biotechnology, 39 (4), 567-577. https://doi.org/10.1007/s10295-011-1037-1.

Wang, J.Y. et al. (2012). Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and Building Materials, 26 (1), 532-540. https://doi.org/10.1016/j.conbuildmat.2011.06.054.

Wang, J. Y. et al. (2014). Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construction and Building Materials, 68, 110-119. http://doi.org/10.1016/j.conbuildmat.2014.06.018.

Wang, J.Y. et al. (2014). Self-healing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research, 56, 139-152. http://doi.org/10.1016/j.cemconres.2013.11.009.

Wang, J. et al. (2015). Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Frontiers in Microbiology, 6 (1088), 1-14. http://doi.org/10.3389/fmicb.2015.01088.

Wang, J. et al. (2018). A chitosan-based pH-responsive hydrogel for encapsulation of bacteria self-healing concrete. Cement and Concrete Composites, 93, 309-322. http://doi.org/10.1016/j.cemconcomp.2018.08.007.

Wu, M.; Johannesson, B.; Geiker, M. (2012). A review: self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Construction and Building Materials, 28 (1), 571-583. http://dx.doi.org/10.1016/j.conbuildmat.2011.08.086.

Wu, M.; Hu, X.; Zhang, Q.; Xue, D.; Zhao, Y. (2019). Growth environment optimization for inducing bacterial mineralization and its application in concrete healing. Construction And Building Materials, 209, 631-643. http://dx.doi.org/10.1016/j.conbuildmat.2019.03.181.

Zhu, X. et al. (2021). Viability determination of Bacillus sphaericus after encapsulation in hydrogel for self-healing concrete via microcalorimetry and in situ oxygen concentration measurements. Cement and Concrete Composites, 119, 104006-104015. http://dx.doi.org/10.1016/j.cemconcomp.2021.104006.

Descargas

Publicado

20/04/2023

Cómo citar

MAESTRELLI, S. C. .; COSTA, A. M. P. .; OLIVEIRA, I. R. B. de; CRUZ, C. M. da; SORCE, A. R. .; RIGO, E. C. da S. Producción y adición de bacterias biomineralizantes encapsuladas en hormigón de construcción. Research, Society and Development, [S. l.], v. 12, n. 4, p. e28912441232, 2023. DOI: 10.33448/rsd-v12i4.41232. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/41232. Acesso em: 19 may. 2024.

Número

Sección

Ingenierías