Vibrational Spectra of the thioglycolate complexes of Zn(II) and Cd(II), structure and natural bond orbitals

Authors

DOI:

https://doi.org/10.33448/rsd-v12i7.42678

Keywords:

Complexos tioglicolatos de Zn(II) e Cd(II); Espectros vibracionais; Análise orbital de ligação natural (NBO).

Abstract

The objective of this research was to characterize the vibrational spectrum of the Zn(II) and Cd(II) thioglycolate complexes, as well as their structures, vibrational analysis and the natural orbitals of bonds, through the infrared spectrum with Fourier transform (FT -IR) and Raman. The thioglycolate complexes of Zn(II) and Cd(II) were synthesized following  procedures given by  the graphical method, and structural analysis was performed  through  a theoretical-experimental method  using both, the hybrid RHF/MP2:STO-3G and the experimental FT-IR and FT-Raman spectra. Calculations were performed on the optimized structure and harmonic vibrational wavenumbers for both complexes were obtained. Second derivative of the vibrational spectra and deconvolution analysis were also performed. The infrared and Raman spectra show many combination and overtone bands in both cases. Calculated and experimental spectra confirmed the structural hypothesis considering two ATG (thioglycolic acid) with two water molecules in the coordination sphere of the central atoms. The natural bond orbital analysis (NBO) was also carried out to study the Zn(II) and Cd(II) hybridization leading to a pseudo-octahedral geometry for both complexes.

References

Bugarčić, Z. D., & Djordjević, B. V. (1998). Platinum (II) Complexes with Thioglycolic Acid. Monatshefte Fuer Chemie, 129, 1267-1274.

Cabral, O. V. (2005). Síntese e caracterização de compostos aminoácidos com metais de transição empregando metodologia gráfica. (Doctoral Thesis). Pontifícia Universidade Católica, Rio de Janeiro.

Charlot, G. (1971). Química Analítica Geral: soluciones acuosas y no acuosas. Barcelona: Toray-Masson.

Costa Jr, A. C., Ondar, G. F., Versiane, O., Ramos, J. M., Santos, T. G., Martin, A. A., ... & Soto, C. T. (2013a). DFT: B3LYP/6-311G (d, p) vibrational analysis of bis-(diethyldithiocarbamate) zinc (II) and natural bond orbitals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 105, 251-258.

Costa Jr, A. C., Ramos, J. M., Soto, C. T., Martin, A. A., Raniero, L., Ondar, G. F., ... & Moraes, L. S. (2013b). Fourier Transform Infrared and Raman spectra, DFT: B3LYP/6-311G (d, p) calculations and structural properties of bis (diethyldithiocarbamate) copper (II). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 105, 259-266.

Costa Jr, A. C., Versiane, O., Ondar, G. F., Ramos, J. M., Ferreira, G. B., Martin, A. A., & Soto, C. T. (2012). An experimental and theoretical approach of spectroscopic and structural properties of the bis (diethyldithiocarbamate)–cobalt (II). Journal of Molecular Structure, 1029, 119-134.

Glendening, E. D., Badenhoop, J. K., Reed, A. E., Carpenter, J. E., Bohmann, J. A., Morales, C. M., ... & Weinhold, F. (2013). NBO 6.0. Madison, WI: Theoretical Chemistry Institute, University of Wisconsin.

Glendening, E. D., Landis, C. R., & Weinhold, F. (2013). NBO 6.0: Natural bond orbital analysis program. Journal of Computational Chemistry, 34(16), 1429-1437.

Head-Gordon, M., Pople, J. A., & Frisch, M. J. (1988). MP2 energy evaluation by direct methods. Chemical Physics Letters, 153(6), 503-506.

Jayatilaka, D., & Lee, T. J. (1992). The form of spin orbitals for open-shell restricted Hartree—Fock reference functions. Chemical Physics Letters, 199(3-4), 211-219.

Landis, C. R., & Weinhold, F. (2016). 18‐electron rule and the 3c/4e hyperbonding saturation limit. Journal of Computational Chemistry, 37(2), 237-241.

Leussing, D. L., & Kolthof, I. M. (1953). Iron – Thioglycolate Complexes. Journal of the American Chemical Society, 75(16), 3904-3911.

Loginova, N. V., Koval’chuk, T. V., Faletrov, Y. V., Halauko, Y. S., Osipovich, N. P., Polozov, G. I., ... & Shadyro, O. I. (2011). Redox-active metal (II) complexes of sterically hindered phenolic ligands: Antibacterial activity and reduction of cytochrome c. Part II. Metal (II) complexes of o-diphenol derivatives of thioglycolic acid. Polyhedron, 30(15), 2581-2591.

Michaelis, L., & Schubert, M. P. (1930). Cobalt complexes of thioglycolic acid. Journal of the American Chemical Society, 52(11), 4418-4426.

Møller, C., & Plesset, M. S. (1934). Note on an approximation treatment for many-electron systems. Physical Review, 46(7), 618–622.

Ohashi, Y., Takeuchi, T., Ouchi, A., & Yoshino, Y. (1970). The Hydrated and Anhydrous Copper (II) Complexes with Thioglycolic Acid Derivatives. Bulletin of the Chemical Society of Japan, 43(9), 2854-2850.

Ramos, J. M., Cruz, M. D. M., Costa Jr, A. C., Ondar, G. F., Ferreira, G. B., Raniero, L., ... & Soto, C. T. (2012). Molecular structure, natural bond analysis, vibrational, and electronic spectra of aspartateguanidoacetatenickel (II),[Ni (Asp)(GAA)]· H2O: DFT quantum mechanical calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 97, 1041-1051.

Rossoti, F. J. C., & Rossoti, H. (1961). The determination of stability constants. McGraw-Hill.

Ringbom, A. (1979). Formacion de complejos em química analítica. Madrid: Alhambra.

Scuseria, G. E. (1991). The open-shell restricted Hartree—Fock singles and doubles coupled-cluster method including triple excitations CCSD (T): application to C+ 3. Chemical Physics Letters, 176(1), 27-35.

Soliman, E. M., Mahmoud, M. E., & Ahmed, S. A. (2002). Reactivity of thioglycolic acid physically and chemically bound to silica gel as new selective solid phase extractors for removal of heavy metal ions from natural water samples. International Journal of Environmental & Analytical Chemistry, 82(6), 403-413.

Soto, C. T., Costa Jr, A. C., Versiane, O., Lemma, T., Machado, N. C. F., Mondragón, M. A., & Martin, A. A. (2015). Surface enhanced Raman scattering, natural bond orbitals and Mulliken atomic charge distribution in the normal modes of diethyldithiocarbamate cadmium (II) complex,[Cd (DDTC) 2]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 146, 192-203.

Watts, J. D., Gauss, J., & Bartlett, R. J. (1993). Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients. The Journal of Chemical Physics, 98(11), 8718-8733.

Weinhold, F., & Landis, C. R. (2005). Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press.

Weinhold, F., Landis, C. R., & Glendening, E. D. (2016). What is NBO analysis and how is it useful? International Reviews in Physical Chemistry, 35(3), 399-440.

Downloads

Published

02/08/2023

How to Cite

PINHEIRO, R. B. dos S.; COSTA JUNIOR, A. C. da .; TÉLLEZ ZEPEDA, C. A. .; RICARTE, K. M. P. .; MONDRAGÓN, M. A. .; CABRAL, O. V. .; TÉLLEZ SOTO, C. A. . Vibrational Spectra of the thioglycolate complexes of Zn(II) and Cd(II), structure and natural bond orbitals. Research, Society and Development, [S. l.], v. 12, n. 7, p. e18712742678, 2023. DOI: 10.33448/rsd-v12i7.42678. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/42678. Acesso em: 15 may. 2024.

Issue

Section

Engineerings