Analysis and verification of stresses in reinforced concrete bridge projects of the box type with sequential application of prestress based on the successive advancement method

Authors

  • Eleutério Zeferino National Institute of Roads in Angola
  • Medci Kahenda Silva Higher Polytechnic Institute of Technology and Sciences
  • Akihito Boa Esperança Higher Polytechnic Institute of Technology and Sciences
  • José Paulo Kai Jean Piaget University of Angola; Agostinho Neto University
  • Vencislau Quissanga Higher Polytechnic Institute of Technology and Sciences https://orcid.org/0000-0003-4746-1974

DOI:

https://doi.org/10.33448/rsd-v13i2.44238

Keywords:

Reinforced concrete bridge; Box beam; Pre-stress; Successive advances; Staves; Pre-stress cables.

Abstract

Given the importance of road bridge systems for the development of a country, rigor in the design process becomes extremely essential in order to meet all requirements related to their functionality. One of the challenging aspects of avoiding possible collapse problems at the beginning or during the construction phase of the project is the selection of the construction process. In this context, the criteria for defining the construction process to be adopted is intrinsically linked to cost, ease of execution, and safety during the creation of the work of art, construction time and the technical capacity of the construction professionals. In this study, deformation analyses and the evolution of efforts in the upper fibers of a bridge were carried out based on conventional construction methods, taking into account the application of pre-stress during construction, aiming to compare the results. Highlighting that the critical tensions were overcome with the help of applying pre-stress in a phased and/or sequential manner. The structural system in question is a single-cell box bridge made of pre-stressed concrete with variable height, measuring 2.50 m in the middle of the span and 4.70 m at the supports. The computational numerical modelling was developed based on the use of finite element programs CSiBridge v.20 and Robot Structural, considering bar and plate/shell/shell elements. Using the method of successive symmetric advances, a longitudinal, linear-static analysis was carried out (neglecting dynamic effects), taking into account the zero, corresponding and closing staves with length measurements of 6.40 m, 4.20 m and 3.00 m, respectively. The results were compared, where it was concluded that the efforts obtained in the construction phase after closing the consoles turned out to be relatively lower due to the redistribution of efforts, taking into account the change in the structural system from isostatic to hyperstatic. With this change, tensile stresses appeared in the lower fibers (this during the construction phase), increasing by 92.10% during the operation phase. The tensile efforts of the upper fibers in the support area increased by 85.6% from the construction phase to the operation phase. Regarding the pre-stressing strength of the concrete, it was applied in order to guarantee reduced losses resulting in values lower than 15%.

References

Almeida, I. D. A. (2016). Segurança de Pontes na Fase Construtiva. Instituto Superior de Engenharia de Lisboa. Departamento da Engenharia Civil. 79.

American Society for Testing and Materials. (1998). “ASTM E606-92: Standard Practice for Strain-Controlled Fatigue Testing”, In Annual Book of ASTM Standards, Part 11, 557-581.

Associação Brasileira de Normas Técnicas, ABNT NBR 7187 (2021). Projeto de pontes de concreto armado e de concreto protendido.

Barbaros, A., Rafiullah, G., Tayfun, D., & Sevket, A. (2022). The effect of post-tensioning force and different cable arrangements on the behavior of cable-stayed bridge. Structures, 44, 1824–1843.

Bakht, B. & Mufti, A. (2015). Bridges analysis, design, structural health monitoring, and rehabilitation. Springer.

Bakht, B. & Jaeger, L. G. (1985). Bridge analysis simplified. McGraw Hill Book Company.

Briseghella, B., Fa, G., Aloisio, A., Pasca, D., He, L., Fenu, L., & Gentile, C. (2021). Dynamic characteristics of a curved steel-concrete composite cable-stayed bridge and effects of different design choices. Structures, 34, 4669–4681.

Cardoso, J. M. D. L. B. (2014). Ponte de Concreto Protendiido com Seção Caixão: Estabelecimento de Relação entre a Altura da Seção Transversal e o Vão. Escola de Engenharia da Universidade Federal do Rio Grande do Sul. Departamento de Engenharia Civil. Porto Alegre, p. 97.

Cardoso, J. M. L. B., Rios, R. D., & Molin, D. C. C. D. (2015). Ponte de concreto protendido com seção caixão: estabelecimento de relação entre altura da seção transversal e vão utilizando concreto de alto desempenho – Classe II – segundo a nova ABNT NBR6118/2014. ANAIS DO 57º CONGRESSO BRASILEIRO DO CONCRETO - CBC2015 – 57CBC.

Chai, T. S., Guo, Chen, Z. H., & Yang, J. (2019). Monitoring and simulation of long-term performance of precast concrete segmental box girders with dry joints, J. Bridge Eng., 16, 0501613.

Cheng, X., Nie, X., & Fan, J. S. (2016). Structural Performance and Strength Prediction of Steel-to-Concrete Box Girder Deck Transition Zone of Hybrid Steel-Concrete Cable-Stayed Bridges. J. Bridge Eng., 21, 04016083.

Da Silva, A. C. S., Quissanga, V., & Silva, J. G. S. (2023). Steel-concrete composite highway bridges dynamic structural behaviour assessment considering the pavement progressive deterioration effect. IBRACON Structures and Materials Journal. 16, 4, e16404. https://doi.org/10.1590/S1983-41952023000400004.

Davide, R.I., Vanni, N., Davide, A., Sandro, C., Fabrizio, G., & Luigino, D. (2022). A Good Practice for the Proof Testing of Cable-Stayed Bridges. Appl. Sci., 12, 3547.

Fatemi, S. J., Ali, M. S., & Sheikh, A. H. (2016). Load distribution for composite steel-concrete horizontally curved box girder bridge. J. Constr. Steel Res., 116, 19–28.

Huang, D.W., Wei, J., Liu, X.C., Xiang, P., & Zhang, S.Z. (2019). Experimental study on long-term performance of steel-concrete composite bridge with an assembled concrete deck. Constr. Build. Mater., 214, 606–618.

Motter, D. D. C., Oliveira, F. C. D., & Xocaira, R. O. (2018). Pontes e Viadutos – Balanços Sucessivos Com Aduelas Pré-moldadas. Faculdade de Ciências Exatas e de Tecnologia da Universidade Tuiuti do Paraná. Curitiba, p. 17.

Paixão, R. D. O. D. (2015). Análise Mecânica e Estrutural de Balanços Sucessivos Aplicados à Construção de Pontes. Escola de Engenharia da Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. Rio de Janeiro, p. 69.

Quissanga, V., Alencar, G. De Jesus, A., Calçada, R., & Silva, J. G. S. (2021). Distortion-Induced Fatigue Reassessment of a Welded Bridge Detail Based on Structural Stress Methods. Metals. 11(12):1952.

Quissanga, V. (2022). Análise estrutural dinâmica e verificação de projeto à fadiga de pontes rodoviárias em aço e mistas (aço-concreto). Universidade do Estado do Rio de Janeiro (UERJ). Rio de Janeiro, Brazil. 311, 201–258.

Reis, A. C., & Peres, G. L. (2016). O Método dos Avanços Sucessivos, desde a Fase de Projeto à Construção da Ponte. Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa. Lisboa, p. 97.

Zhou, G. P., Li, A. Q., Li, J. H., Duan, M. J., Xia, Z. Y., & Zhu, L. (2019). Determination and Implementation of Reasonable Completion State for the Self-Anchored Suspension Bridge with Extra-Wide Concrete Girder. Appl. Sci. 9, 2576.

Downloads

Published

03/02/2024

How to Cite

ZEFERINO, E. .; SILVA, M. K. .; BOA ESPERANÇA, A. .; KAI, J. P. .; QUISSANGA, V. . Analysis and verification of stresses in reinforced concrete bridge projects of the box type with sequential application of prestress based on the successive advancement method. Research, Society and Development, [S. l.], v. 13, n. 2, p. e1013244238, 2024. DOI: 10.33448/rsd-v13i2.44238. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/44238. Acesso em: 11 may. 2024.

Issue

Section

Engineerings