Application of wound dressings based on bacterial cellulose in the healing of chronic and complex wounds: Trends and perspectives

Authors

DOI:

https://doi.org/10.33448/rsd-v13i2.44920

Keywords:

Bacterial cellulose; Wound healing; Wound dressing; Complex chronic ulcers; Tissue engineering.

Abstract

The aim of this study was to carry out a narrative literature review of the most recent studies and technological advances related to the biomedical applications of dressings composed of bacterial cellulose biopolymer (BC) in the healing of chronic and complex wounds. BC can be produced on a large scale through a fermentation process by specific bacteria. Cellulose fibrils form a highly porous network, similar to the structure of the extracellular matrix of tissues, as well as having favorable physicochemical characteristics for applications as dressings. Recent studies have shown the importance of and interest in incorporating active pharmaceutical ingredients of both synthetic and natural origin, with the aim of conferring specific pharmacological properties to the structure of these polymeric matrices. The physicochemical versatility of BC allows this material to be functionalized and modified through various techniques, both ex situ and in situ, to obtain new hybrid materials with functional properties for different biomedical applications. Among the pharmaceutical active ingredients incorporated into a CB matrix for application to chronic and complex wounds are antiseptic and antimicrobial active ingredients, anti-inflammatories from natural sources and growth factors. Another strategy that has proved promising is the application of mesenchymal stem cells and components of their secretome in the polymeric matrix of the BS. Therefore, this review sheds light on the latest technological advances regarding the different ways of functionalizing BC-based dressings for the treatment of chronic and complex wounds.

References

Abazari, M. F., et al. (2021). Recent Advances in Cellulose-Based Structures as the Wound-Healing Biomaterials: A Clinically Oriented Review. Applied Sciences, 11(17), 7769.

Abbade, L. P, F., et al. (2020). Consensus on the diagnosis and management of chronic leg ulcers - Brazilian Society of Dermatology. An Bras Dermatol, 95 (Supp. 1), 1-18.

Aditya, T., et al. (2022). Surface Modification of Bacterial Cellulose for Biomedical Applications. International Journal of Molecular Sciences, 23(2), 610.

Akers, K. S., et al. (2014). Infectious Disease Clinical Research Program Trauma Infectious Disease Outcomes Study Group. Biofilm sandpersistentwoundinfections in United States military trauma patients: a case-controlanalysis. BMC Infect Dis, 14, 190.

Andriani, D., Apriyana, A. Y. & Karina, M. (2020). The optimizationofbacterialcelluloseproductionand its applications: a review. Cellulose, 1-20.

Atkin L. (2019). Chronicwounds: thechallengesofappropriate management. Br J Community Nurs, 24(Supp. 9), S26-S32.

Augustine, R., et al. (2021). Growth factorloaded in situ photocrosslinkablepoly(3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatinmethacryloylhybrid patch for diabeticwoundhealing. MaterSciEng C MaterBiolAppl., 118, 111519.

Azevedo, M. M., et al. (2020). Hard-to-healwounds, biofilmandwoundhealing: anintricateinterrelationship. Br J Nurs.,29(5), S6-S13.

Baquerizo Nole K. L., et al. (2014). Woundresearchfundingfromalternativesourcesof federal funds in 2012. WoundRepairRegen., 22(3), 295-300.

Bian, D., et al. (2022). The applicationofmesenchymalstromalcells (MSCs) andtheirderivativeexosome in skinwoundhealing: a comprehensive review. StemCell Res Ther.,13(1), 24.

Bodin, A., et al. (2010). Tissue-engineeredconduitusing urine-derivedstemcellsseededbacterialcellulosepolymer in urinaryreconstructionanddiversion. Biomaterials, 31(34), 8889-901.

Cano Sanchez, M., et al. (2018). TargetingOxidative Stress and Mitochondrial Dysfunction in the Treatment of Impaired Wound Healing: A Systematic Review. Antioxidants (Basel), 7(8), 98.

Cherng, J. H., et al. (2021). BacterialCellulose as a PotentialBio-Scaffold for EffectiveRe-EpithelializationTherapy. Pharmaceutics, 13(10), 1592.

Chinta, M. L., et al. (2021). Assessment ofproperties, applicationsandlimitationsofscaffoldsbasedoncelluloseand its derivatives for cartilagetissueengineering: A review. Int J BiolMacromol, 175, 495-515.

Choi, S. M., et al. (2022). BacterialCelluloseand Its Applications. Polymers (Basel), 14(6), 1080.

Choudhary, M., et al. (2021). Scarfreehealingof full thicknessdiabeticwounds: A uniquecombinationofsilvernanoparticles as antimicrobialagent, calciumalginatenanoparticles as hemostaticagent, freshblood as nutrient/growthfactorsupplierandchitosanas basematrix. Int J BiolMacromol, 178, 41-52.

Ciecholewska-Juśko, D., et al.(2021). Superabsorbentcrosslinkedbacterialcellulosebiomaterials for chronicwounddressings. CarbohydrPolym., 253, 117247

Coltro, P. S.,et al. (2011). Atuação da cirurgia plástica no tratamento de feridas complexas. Revista do Colégio Brasileiro de Cirurgiões, 38 381-386.

Costa, A. M., et al. (2015). Custos do tratamento de úlceras por pressão em unidade de cuidados prolongados em uma instituição hospitalar de Minas Gerais. Enfermagem Revista, 18(1), 58-74.

Cronin, P., Ryan, F., & Coughlan, M. (2008). Undertaking a literature review: a step-by-step approach. British journal of nursing, 17(1), 38-43.

Das, M., et al. (2022). Compositescaffoldsbasedonbacterialcellulose for wounddressingapplication.ACS Applied BioMaterials, 5(8), 3722-3733.

De almeida, C. M. & Motta, J. B. (2018). Tratamento das Úlceras Crônicas de Membros Inferiores: Estado da Arte e Perspectivas Futuras.Hegemonia, 25, 122-122.

De Amorim, J. D. P.,et al. (2022). BacterialCellulose as a Versatile Biomaterial for WoundDressingApplication. Molecules, 27,17, 5580.

De Lucena, M. T., et al.(2015). Biocompatibilityandcutaneousreactivityofcellulosicpolysaccharidefilm in inducedskinwounds in rats.JournalofMaterials Science: Materials in Medicine, 26, 1-6.

DeMattos, I. B., et al. (2019). Uptakeof PHMB in a bacterialnanocellulose-basedwounddressing: A feasibleclinical procedure.Burns, 45, 4, 898-904.

Djaprie, S. &Wardhana, A. (2013). Dressing for PartialThickness Burn Using Microbial CelluloseandTransparentFilmDressing: A ComparativeStudy. JurnalPlastikRekonstruksi, 2(2), 89-95.

Emre Oz, Y. (2021). A review offunctionalisedbacterialcellulose for targetedbiomedicalfields. JournalofBiomaterialsApplications, 36(4), 648-681.

Fatima, A., et al. (2022). Ex situ developmentandcharacterizationofgreenantibacterialbacterialcellulose-basedcomposites for potentialbiomedicalapplications. AdvancedCompositesandHybridMaterials, 5, 307–321.

Frazier, T., et al. (2020). Clinical translationalpotential in skinwoundregeneration for adipose-derived, blood-derived, andcellulosematerials: cells, exosomes, andhydrogels. Biomolecules, 10(10), 1373.

Gao, H. L., et al. (2019). ComparisonofBacterialNanocelluloseProducedbyDifferentStrainsunderStaticandAgitated Culture Conditions. Carbohydratepolymers, 227, 115323.

Gao, H. L., et al. (2020). Bioinspiredhierarchicalhelicalnanocompositemacrofibersbasedonbacterialcellulosenanofibers. National Science Review, 7(1), 73-83.

Garcia-Orue, I., et al. (2017). Nanotechnology-based delivery systems to release growthfactorsandotherendogenousmolecules for chronicwoundhealing. JournalofDrug Delivery Science and Technology, 42, 2-17.

Golchin, A. &Nourani, M. R. (2020). Effectsofbilayernanofibrillarscaffoldscontainingepidermalgrowthfactoron full‐thicknesswoundhealing. Polymers for Advanced Technologies,31(11), 2443-2452.

Gorgieva, S. (2020). Bacterialcellulose as a versatileplatform for researchanddevelopmentofbiomedicalmaterials. Processes, 8(5), 624.

Graves, N., et al. (2022). A narrative review oftheepidemiologyandeconomicsofchronicwounds.British JournalofDermatology, 187(2), 141–148.

Gregory, D. A., et al. (2021). Bacterialcellulose: A smart biomaterial withdiverseapplications. Materials Science andEngineering: Reports, 145, 100623.

Gupta, A., et al. (2020). Synthesisof Silver NanoparticlesUsingCurcumin-CyclodextrinsLoaded Into Bacterial Cellulose-Based Hydrogels for WoundDressingApplications. Biomacromolecules, 21, 1802-1811.

He, W., et al. (2023). Fabricationof Cu2+-loadedphase-transitedlysozymenanofilmonbacterialcellulose: Antibacterial, anti-inflammatory, and pro-angiogenesis for bacteria-infectedwoundhealing. CarbohydratePolymers, 309, 120681.

Hettich, B. F., et al. (2020). Exosomes for wound healing: purification optimization and identification of bioactive components. Advanced Science, 7(23), 2002596.

Hoff, J., et al. (2021). Controlled Release ofthe α-Tocopherol-DerivedMetabolite α-130-Carboxychromanol fromBacterialNanocelluloseWound Cover Improves WoundHealing. Nanomaterials, 11, 1939.

Horue, M., et al. (2020). Antimicrobialactivitiesofbacterialcellulose – Silver montmorillonitenanocomposites for woundhealing. Materials Science andEngineering: C, 116, 111152.

Horue, M., et al. (2023). BacterialCellulose-BasedMaterials as Dressings for WoundHealing.Pharmaceutics, 15, 424.

Islam,M. U. I., et al. (2017). Strategies for cost-effectiveandenhancedproductionofbacterialcellulose. Internationaljournalofbiologicalmacromolecules, 102, 1166-1173.

Jabbari, F. & Babaeipour, V. Bacterialcellulose as a potentialbiopolymer for woundcare. A review. InternationalJournalofPolymericMaterialsandPolymericBiomaterials.

Jiji, S., et al. (2020). Bacterialcellulosematrixwith in situ impregnationofsilvernanoparticles via catecholic redox chemistry for thirddegreeburnwoundhealing. Carbohydratepolymers, 245, 116573.

Jones, E. M., et al. (2015). The Effectof PH ontheExtracellular Matrix andBiofilms. Adv. WoundCare, 4, 431–439.

Joseph, B., et al. (2020). Cellulosenanocomposites: Fabricationandbiomedicalapplications. JournalofBioresourcesandBioproducts, 5(4), 223-237.

Kamal, T., et al. (2022). Developmentofplantextractimpregnatedbacterialcellulose as a greenantimicrobialcomposite for potentialbiomedicalapplications. Industrial CropsandProducts, 187, 115337.

Kathawala, M. H., et al. (2019). Healingofchronicwounds: an update ofrecentdevelopmentsand future possibilities. TissueEngineering Part B: Reviews, 25(5), 429-444.

Khalid, A., et al. (2017). Bacterialcellulose-zinc oxide nanocomposites as a novel dressing system for burnwounds. CarbohydratePolymers, 164, 214–221.

Khalid, A., et al. (2022). Multiwalledcarbonnanotubesfunctionalizedbacterialcellulose as anefficienthealing material for diabeticwounds. InternationalJournalofBiologicalMacromolecules, 203, 256-267.

Khan, S., et al. (2015). Bacterialcellulose-titaniumdioxidenanocomposites: Nanostructuralcharacteristics, antibacterialmechanism, andbiocompatibility. Cellulose, 22, 565–579.

Kloc, M., et al. (2019). Macrophagefunctions in woundhealing. JournalofTissueEngineeringandRegenerative Medicine, 13, 99–109.

Kotcharat, P., et al. (2022). Enhanced Performance of Aloe vera‐IncorporatedBacterialCellulose/PolycaprolactoneCompositeFilm for WoundDressingApplications.JournalofPolymersandtheEnvironment, 30, 1151–1161.

Kwak, M. H., et al. (2015). BacterialCelluloseMembraneProducedbyAcetobacter Sp. A10 for Burn WoundDressingApplications. Carbohydratepolymers, 122, 387–398.

Lachiewicz, A. M., et al. (2017). Bacterialinfectionsafterburn injuries: impactofmultidrugresistance. Clinical InfectiousDiseases, 65(12), 2130-2136.

Le Ouay, B. &Stellacci, F. (2015). Antibacterialactivityofsilvernanoparticles: A surface science insight. Nano Today, 10, 339–354.

Lemnaru, G. M., et al. (2020). Antibacterialactivityofbacterialcelluloseloadedwithbacitracinandamoxicillin: In vitro studies. Molecules, 25(18), 4069.

Lemnaru, G. M., et al. (2023). AntimicrobialWoundDressingsbasedonBacterialCelluloseandIndependentlyLoadedwithNutmegandFirNeedleEssentialOils. Polymers, 15, 17, 3629.

Li, D. & Wu, N. (2022). Mechanismandapplicationofexosomes in thewoundhealingprocess in diabetes mellitus. Diabetes Researchand Clinical Practice, 187, 109882.

Li, Y., et al. (2015). EvaluationoftheEffectoftheStructureofBacterialCelluloseon Full ThicknessSkinWoundRepairon a Microfluidic Chip. Biomacromolecules,16, 780–789.

Lopes, F. M., et al. (2011). Impacto socioeconômico das feridas crônicas. Projeto Temático, Parecer 14/2010, Universidade de Trás-os-Montes e Alto douro, Vila real, Portugal.

Malmir, S., et al. (2020). Antibacterialpropertiesof a bacterialcellulose CQD-TiO2 nanocomposite.CarbohydratePolymers, 234, 115835.

Mcdermott, K., et al. (2023). Etiology, epidemiology, anddisparities in theburdenofdiabeticfootulcers.Diabetes Care, 46(1), 209-221.

Mcdermott, M. M., et al.(2022). Effectoftelmisartanonwalking performance in patientswithlowerextremityperipheralarterydisease: The TELEX randomizedclinicaltrial. JAMA, 328(13), 1315-1325.

Meng, E., et al. (2019). Bioapplicationsofbacterialcellulosepolymersconjugatedwith resveratrol for epithelialdefectregeneration. Polymers, 11(6), 1048.

Moritz, S., et al. (2014). Active wounddressingsbasedonbacterialnanocellulose as drug delivery system for octenidine. Int JPharm, 471, 45–55.

Noal, H., et al. (2023). Custo-efetividade do tratamento de feridas crônicas. Revista Eletrônica Acervo Enfermagem, 23(2).

Oliveira, G. M., et al. (2023). Bacterialcellulosebiomaterials for thetreatmentoflowerlimbulcers. Revista do Colégio Brasileiro de Cirurgiões, 50, e20233536.

Ossowicz-Rupniewska, P., et al. (2021). Transdermal Delivery Systems for IbuprofenandIbuprofenModifiedwith Amino AcidsAlkylEstersBasedonBacterialCellulose. InternationalJournalof Molecular Sciences, 22, 6252.

Pal, S., et al. (2017). Silver-functionalizedbacterialcellulose as antibacterialmembrane for wound-healingapplications. ACS Omega, 2, 3632–3639.

Pancu, D. F., et al.(2021). Antibiotics: conventionaltherapyand natural compoundswithantibacterialactivity—a pharmaco-toxicologicalscreening. Antibiotics, 10(4), 401.

Pasaribu, K. M., et al. (2020). Characterizationofbacterialcellulose-basedwounddressing in differentorderimpregnationofchitosanandcollagen. Biomolecules, 10(11), 1511.

Patel, S., et al. (2019). Mechanistic insight intodiabeticwounds: Pathogenesis, molecular targets andtreatmentstrategiesto pace woundhealing. Biomed. Pharmacother, 112,108615.

Paterson-Beedle, M., et al. (2000). A cellulosicexopolysaccharideproducedfromsugarcanemolassesby a Zoogloea sp. CarbohydratePolymers, 42(4), 375-383.

De Amorim, J. P., et al. (2022). BacterialCellulose as a Versatile Biomaterial for WoundDressingApplication.Molecules, 27, 5580.

Pinto, F. C. M., et al. (2016). Acutetoxicity, cytotoxicity, genotoxicityandantigenotoxiceffectsof a cellulosicexopolysaccharideobtainedfromsugarcanemolasses. Carbohydratepolymers, 137, 556-560.

Pita-Vilar, M., et al. (2023). et al. Recentadvances in 3D printedcellulose-basedwounddressings: A review on in vitro and in vivo achievements.CarbohydratePolymers, 321, 121298.

Qin, J., et al. (2022). Recentadvances in bioengineeredscaffolds for cutaneouswoundhealing. Frontiers in BioengineeringandBiotechnology, 10, 841583.

Quintana, H., et al. (2021). Bacterialcellulosemembraneenrichedwithfibroblastgrowthfactorassociatedwithphotobiomodulation: In vitro evaluation. World JournalofAdvancedResearchand Reviews, 9(2), 076–089.

Rajendiran, K., et al. (2019). AntimicrobialActivityandMechanismofFunctionalized Quantum Dots. Polymers, 11, 1670.

Rajesh, A., et al. (2023). A systemic review on Aloe vera derived natural biomaterials for woundhealing: Preparationandapplication. BiocatalysisandAgriculturalBiotechnology, 102910.

Ramírez-Carmona, M., et al. (2023). ProductionofBacterialCelluloseHydrogeland its Evaluation as a Proton Exchange Membrane.JournalofPolymersandtheEnvironment, 31, 2462–2472.

Rasouli, M., et al. (2023). Bacterialcellulose as potentialdressingandscaffold material: towardimprovingtheantibacterialandcelladhesionproperties. JournalofPolymersandtheEnvironment, 1-20.

Raut, M., et al. (2023). BacterialCellulose-Based Blends andComposites: VersatileBiomaterials for TissueEngineeringApplications.InternationalJournalof Molecular Sciences, 24, 986.

Resolução Da Diretoria Colegiada - RDC nº 751, de 15 de setembro de 2022.

Riaz, S., et al. (2021). Chemical CharacteristicsandTherapeuticPotentialsof Aloe vera. RADS JournalofBiologicalResearch& Applied Sciences, 12(2), 160-166.

Rodríguez-Cabello, J. C., et al. (2018). Bioactivescaffoldsbasedonelastin-like materials for woundhealing. Advanceddrug delivery reviews, 129, 118-133.

Rother, E. T.. (2007). Revisão sistemática X revisão narrativa. Acta Paulista De Enfermagem, 20(2), v–vi. https://doi.org/10.1590/S0103-21002007000200001.

Sajjad, W., et al. (2020). FabricationofBacterialCellulose-CurcuminNanocomposite as a Novel Dressing for PartialThicknessSkin Burn. Frontiers in BioengineeringandBiotechnology, 8, 553037.

Salim, S., et al. (2021). Global epidemiologyofchronicvenousdisease: a systematic review withpooledprevalenceanalysis.AnnalsofSurgery, 274(6), 971-976.

Sanchavanakit, N., et al. (2006). Growth ofHumanKeratinocytesandFibroblastsonBacterialCelluloseFilm. BiotechnologyProgress, 22(4), 1194-9.

Santos, L. E., et al. (2021). Segurança e eficácia da celulose bacteriana obtida a partir do melaço de cana-de-açúcar no processo de cicatrização e remodelamento tecidual: uma revisão narrativa. Research, Society andDevelopment, 10(16).

Santos, S. M., et al. (2015). Characterizationofpurifiedbacterialcellulosefocusedon its use onpaperrestoration. Carbohydratepolymers, 116, 173-181.

Savitskaya, I. S., et al. (2019). Antimicrobialandwoundhealingpropertiesof a bacterialcellulosebased material containing B. subtiliscells. Heliyon, 5(10).

Schiefer, J. L., et al. (2021). Comparisonofwoundhealingandpatientcomfort in partial‐thicknessburnwoundstreatedwith SUPRATHEL andepictehydrowounddressings. Internationalwoundjournal, 19(4), 782-790.

Schneider, C.,Stratman, S. &Kirsner, R. S. (2021). Lower extremityulcers. Medical Clinics, 105(4), 663-679.

Sen, C. K., et al. (2009). Humanskinwounds: a major andsnowballingthreattopublichealthandtheeconomy.WoundRepairRegen, 17(6), 763–71.

Silva, L. G., et al. (2021). Bacterialcelluloseaneffective material in thetreatmentofchronicvenousulcersofthelowerlimbs. J MaterSciMater Med,7, 79–79.

Solway, D. R., et al. (2011). A parallel open‐labeltrialtoevaluate microbial cellulosewounddressing in thetreatmentofdiabeticfootulcers. InternationalWoundJournal, 8(1), 69-73.

Sulaeva, I., et al. (2020). Fabricationofbacterialcellulose-basedwounddressingswithimproved performance byimpregnationwithalginate. Materials Science andEngineering: C, 110, 110619.

Swaminathan, J., et al. (2020). Bacterialcellulosematrixwith in situ impregnationofsilvernanoparticles via catecholic redox chemistry for thirddegreeburnwoundhealing.CarbohydratePolymers, 245, 116573.

Swingler, S., et al. (2019). Aninvestigationintotheanti-microbialpropertiesofbacterialcellulosewounddressingsloadedwithcurcumin: hydroxypropyl-β-cyclodextrin supramolecular inclusioncomplex. Microbiology Society, 1(10).

Swingler, S., et al. (2021). Recentadvancesandapplicationsofbacterialcellulose in biomedicine. Polymers, 13, 412.

Torgbo, S. &Sukyai, P. (2020). Biodegradationandthermalstabilityofbacterialcellulose as biomaterial: The relevance in biomedicalapplications. Polymer DegradationandStability, 179, 109232.

Tsouko, E., et al. (2015). Bacterialcelluloseproductionfrom industrial wasteandby-productstreams. Internationaljournalof molecular sciences, 16(7), 14832-14849.

Ul-Islam, M., et al. (2017). Strategies for cost-effectiveandenhancedproductionofbacterialcellulose. InternationalJournalofBiologicalMacromolecules, 102, 1166–1173.

Ul-Islam, M., et al. (2014). Synthesisofregeneratedbacterialcellulose-zinc oxide nanocompositefilms for biomedicalapplications. Cellulose, 21, 433–447.

Ullah, M., et al. (2017). Recentadvancements in bioreactionsofcellularandcell-free systems: A studyofbacterialcellulose as a model. Korean Journalof Chemical Engineering, 34, 1591–1599.

Volova, T. G., et al. (2018). Antibacterialpropertiesoffilmsofcellulosecompositeswithsilvernanoparticlesandantibiotics. Polymer Testing,65, 54-68.

Wahid, F., et al. (2021). Fabricationofbacterialcellulose-baseddressings for promotinginfectedwoundhealing. ACS Applied Materials& Interfaces, 13(28), 32716-32728.

Wan, Y., et al. (2020). Scalablesynthesisofrobustandstretchablecompositewounddressingsbydispersingsilvernanowires in continuousbacterialcellulose. Composites Part B: Engineering, 199, 108259.

Wiegand, C., et al. (2015). Antimicrobialfunctionalizationofbacterialnanocellulosebyloadingwithpolihexanideandpovidone-iodine. JournalofMaterials Science: Materials in Medicine, 26, 245.

Wu, Y., et al. (2023). Bacterialcellulose-baseddressingswithphotothermalbactericidalactivityand pro-angiogenicability for infectedwoundhealing. JournalofMaterials Science & Technology, 160, 76-85.

Yang, Z., et al. (2022). Designmentofpolydopamine/bacterialcelluloseincorporatingcopper (II) sulfate as anantibacterialwounddressing. BiomaterialsAdvances, 134, 112591.

Zahel, P., et al. (2022). BacterialCellulose - Adaptationof a Nature-Identical Material totheNeedsofAdvancedChronicWoundCare.Pharmaceuticals (Basel), 15(6), 683.

Zandi, N., et al. (2021). et al. Biomimeticnanoengineeredscaffold for enhanced full-thicknesscutaneouswoundhealing.Acta Biomaterialia, 124, 191-204.

ZHANG, P., et al. (2017). Global epidemiologyofdiabeticfootulceration: asystematic review and meta-analysis.Ann Med, 49, 106-16.

Zheng, L., et al. (2020). LatestAdvancesonBacterialCellulose-BasedAntibacterialMaterials as WoundDressings. Frontiers in BioengineeringandBiotechnology, 8, 593768.

Zmejkoski, D. Z., et al. (2022). Antibacterialcompositehydrogelsof graphene quantum dotsandbacterialcelluloseacceleratewoundhealing. JournalofBiomedicalMaterialsResearch Part B: Applied Biomaterials, 110(8), 1796-1805.

Zywicka, A., et al. (2018). Modification of bacterial celulose with quaternaryammoniumcompoundsbasedonfattyacids and amino acidsandtheeffectonantimicrobialactivity. Biomacromolecules, 19(5), 1528-1538.

Published

06/02/2024

How to Cite

PALÁCIO, S. B. .; PENELLO, S. O. .; MONTEIRO, C. T. da M. .; MARCHETTI, R. C. H. .; GRAEFF, A. de A. .; PAIVA, M. J. B. de .; MAHNKE, L. C. .; PINTO, F. C. M. .; TEIXEIRA, M. C. . Application of wound dressings based on bacterial cellulose in the healing of chronic and complex wounds: Trends and perspectives . Research, Society and Development, [S. l.], v. 13, n. 2, p. e1813244920, 2024. DOI: 10.33448/rsd-v13i2.44920. Disponível em: https://www.rsdjournal.org/index.php/rsd/article/view/44920. Acesso em: 12 may. 2024.

Issue

Section

Review Article